Functions without Antiderivatives as Known Combination of Basic Functions
Trending Questions
Q. Let A={(x, y)∈R×R|2x2+2y2−2x−2y=1},
B={(x, y)∈R×R|4x2+4y2−16y+7=0} and
C={(x, y)∈R×R|x2+y2−4x−2y+5≤r2}.
Then the minimum value of |r| such that A∪B⊆C is equal to:
B={(x, y)∈R×R|4x2+4y2−16y+7=0} and
C={(x, y)∈R×R|x2+y2−4x−2y+5≤r2}.
Then the minimum value of |r| such that A∪B⊆C is equal to:
- 2+√102
- 3+2√52
- 1+√5
- 3+√102
Q. If limx→0x(1+acosx)−bsinxx3=1 then the value of |a+b| is
Q. If f(x)=cosx, 0≤x≤π2, then the real number ‘c’ of the mean value theorem is
- π6
- cos−1(2π)
- π4
- sin−1(2π)
Q. Let g(x)=x∫0f(t)dt, where f is such that 12≤f(x)≤1 for t∈[0, 1] and 0≤f(t)≤12 for t∈[1, 2] Then, g(2) satisfies the inequality
- −32≤g(2)<12
- 0≤g(2)<2
- 12≤g(2)≤32
- 2<g(2)<4
Q. Antiderivative of all the continuous functions can be written in terms of elementary functions
- False
- True
Q. Show that limx→1x+x2+x3+....+xn−nx−1 is n(n+1)2.
Q. If f(x)=sgn(x5) then which of the following is/are false (where sgn denotes signum function)
- f′(0+)=1
- f′(0−)=1
- f is continuous but not differentiable at x = 0
- f is discontinuous at x = 0
Q. If f(x) and g(x) are inverse function of each other such that f(1)=3 & f(3)=1, then ∫31(g(x)+xf′(g(x)))dx is equal to
Q. If, A1=n+1∫n(min{|x−n|, |x−(n+1)|})dx,
A2=n+2∫n+1(|x−n|−|x−(n+1)|)dxA3=n+3∫n+2(|x−(n+4)|−|x−(n+3)|)dx and g(x)=A1+A2+A3, where n∈N, then
A2=n+2∫n+1(|x−n|−|x−(n+1)|)dxA3=n+3∫n+2(|x−(n+4)|−|x−(n+3)|)dx and g(x)=A1+A2+A3, where n∈N, then
- A1+A2+A3=9
- A1+A2+A3=94
- 100∑n=1g(x)=9004
- 100∑n=1g(x)=300
Q. limx→∞(x23x−2−x3) is equal to
- 13
- 23
- −23
- −29
- 29
Q. The value of the definite integral √ln(π2)∫02xex2cos(ex2) dx
- 1
- 1+sin1
- 1−sin1
- sin1−1
Q. π6∫π3ln(sinx)dx−12ln(34)∫−ln2sin−1exdx is
- π6 ln(32)
- π3 ln(34)
- π6 ln(23)
- πln(43)
Q. ___
limx→2sin(ex−2−1)log(x−1)
Q. The value of π2∫−π211+esinxdx is
- π2
- π4
- π
- 3π2
Q. limx→0loge(1+x)3x−1=
- 1
- log3e
- loge3
- 0
Q. Antiderivative of all the continuous functions can be written in terms of elementary functions
- False
- True
Q. If ¯¯¯a=2¯i+¯¯¯k, ¯¯b=¯i+¯j+¯¯¯k, ¯¯c=4¯i−3¯j+7¯¯¯k, then the vector ¯¯¯r satisfying ¯¯¯rׯ¯b=¯¯cׯ¯b and ¯¯¯r.¯¯¯a=0 is
- ¯i+8¯j+2¯¯¯k
- ¯i−8¯j+2¯¯¯k
- ¯i−8¯j−2¯¯¯k
- −¯i−8¯j+2¯¯¯k
Q.
Consider f:1, 2, 3→ {a, b, c}given by f(1)=a, f(2)=b and f(3)=c. Find the (f−1)−1 of (f−1) . Show that (f−1)−1=f.
Q. Antiderivative of all the continuous functions can be written in terms of elementary functions
- False
- True
Q. limx→11−x131−x14=
- 1
- 43
- 0
- 34
Q. limx→0cosxπ−x
Q. The area bounded by y=sin(π2x), x=0, y=0 and x=43 is
- 6π
- 3π
- 2π
- 9π
Q. Find the value of a?
Q. List IList II(A) If f(x)={x ; x≤1x2+bx+c ; x>1and f′(x) exist finitely for x∈R, (P) −1then ′bc′ is equal to (B)The number of tangents to the curve y2−2x3−4y+8=0 that (Q) 1pass through (1, 2) is (C)f(x)=2x3−3ax2+43a2x+1(a>0) attains its maxima and(R) 2minima at x=k and x=k2 respectively, then a is (D)If f(x)=1∫−1sinx1+t2 dt and f′(π3)=πk, then ′k′ is equal to (S) 3(T) 4(U) 6
Which of the following option is CORRECT ?
Which of the following option is CORRECT ?
- (A)→(Q)
- (B)→(U)
- (C)→(S)
- (D)→(T)
Q. Let J=1/2∫0(14−x2)4dx and K=1/2∫0x4(1−x)4dx. Then
- K=11260
- J=121∫0x4(1−x)4dx
- J−K=0
- JK=2
Q. π6∫π3ln(sinx)dx−12ln(34)∫−ln2sin−1exdx is
- π6 ln(23)
- π6 ln(32)
- π3 ln(34)
- πln(43)
Q. If f(x) and g(x) are inverse function of each other such that f(1)=3 & f(3)=1, then ∫31(g(x)+xf′(g(x)))dx is equal to
Q. 0<a<b<π2;f(a, b)=tanb−tanab−a then
- f(a, b)<12
- f(a, b)≥1
- f(a, b)≤1
- f(a, b)<0
Q. If f(x)=x−[x] and g(x)=x∫0f(t+n)dt ∀n∈N, then g′(52) is equal to
- f(12)
- 12
- f(32)
- f(52)−f(5)
Q. If y=x(x+5), then dxdy equals-
- 5(1−y)2
- 5(1+y)2
- 1(1+y)2
- None of these