Fundamental Laws of Logarithms
Trending Questions
Q. If y=√x+√x+√x+⋯∞, then dydx=
- 1y2−1
- 12y+1
- 2yy2−1
- 12y−1
Q. Let A={n∈N∣∣n2≤n+10, 000}, B={3k+1|k∈N} and C={2k|k∈N}. Then the sum of all the elements of the set A∩(B−C) is equal to
Q.
What is the value of ?
Q. 7log(1615)+5log(2524)+3log(8180) is equal to
- \N
- 1
- log 2
- log 3
Q. If a=log245175 and b=log1715875, then the value of 1−aba−b is
Q. If log1227=a, then log616=
- 2.3−a3+a
- 3.3−a3+a
- 4.3−a3+a
- None of these
Q. The value of log105⋅log1020+(log102)2 is
Q. The value of
((log29)2)1log2(log29)×(√7)1log47
is .
((log29)2)1log2(log29)×(√7)1log47
is
Q. The value of log5log2log3log2512 is
Q. The value of log3 4log4 5log5 6log6 7log7 8log8 9 is
- 1
- 2
- 3
- 4
Q. If log3(3x−8)=2−x, then the value of x is
- −1
- 2
- 9
- 3
Q. The value of 1log360+1log460+1log560, is
Q. If log4 5 = a and log5 6 = b, then log3 2 is equal to
- 12a+1
- 12b+1
- 12ab−1
- 2ab+1
Q. Consider the four sets A, B, C and D defined as
A={a:a=8(log4(x))3+4log√2(x4), x>0}
B={b:b=20+13(logx2)2, x>0}
C={c∈N:c∈A∩B for same x>0}
D={x∈Z:(x−2)2(15x2−56x+17)<0}
Then the number of elements in C×D is
A={a:a=8(log4(x))3+4log√2(x4), x>0}
B={b:b=20+13(logx2)2, x>0}
C={c∈N:c∈A∩B for same x>0}
D={x∈Z:(x−2)2(15x2−56x+17)<0}
Then the number of elements in C×D is
Q. The value of √(log0.54)2 is
Q. If 3a=4, 4b=5, 5c=6, 6d=7, 7e=8 and 8f=9, then the value of the product (abcdef) is
Q.
What is the value of ?
Q.
The sum of the integers from to which are divisible by and , is
Q. logn1+logn(1+12)+logn(1+13)+……+logn(1+1n−1)=
- 1−logn2
- 1+logn2
- log2(n−1)
- logn(n+1)
Q. Given that log102=0.3010, the number of digits in the number 20002000 is
- 6600
- 6603
- 6543
- 2345
Q. If a1−2x.b1+2x=a4+x.b4−x; a, b>0 & a≠b, then the value of x is
- log(ba)(ab)
- log(ab)(ab)
- 12log(ab)(ab)
- 12log(ba)(ab)
Q.
Expand
Q. If log(x+z)+log(x−2y+z)=2log(x−z), then
- y(x+z)=2xz
- z(z+y)=2xy
- x2−z2=y
- x+z=3y
Q. The value of 2log2+log3log48−log4 is
- 1
- 2
- 3
- −1
Q. If x=loga(bc), y=logb(ca), z=logc(ab), then which of the following is equal to 1
- x + y + z
- (1+x)−1+(1+y)−1+(1+z)−1
- xyz
- None of these
Q.
If , then is equal to:
Q. The value of log√2(log√2(log4√3(log327))) is
- 2
- 3
- 4
- 3√3
Q. The number of real solution(s) of the equation (xlog103)2−3log10x=2 is
Q. The equation x(log3x)2−92log3x+5=3√3 has
- at least one real root
- exactly one real root
- exactly one irrational root
- complex roots
Q. If log102=0.30103, log103=0.47712 the number of digits in 312×28 is
- 9
- 10
- 7
- 8