Implicit Differentiation
Trending Questions
Q. If 2x+2y=2x+y then the value of dydx at x=y=1 is
- 0
- - 1
- 1
- 2
Q. If y=√x+√y+√x+√y+....∞, then dydx is equal to
- None of these
- y2−x2y3−2xy−1
- 12y−1
- (2y−1)
Q. If y=√sin x+√sin x+√sin x+.....∞, then dydx is equal to
- 2x−1cos x
- 2y−1cos x
- cos x2y−1
- cos x2x−1
Q. If x2+y2=t−1t and x4+y4=t2+1t2, then x3ydydx equals
- - 1
- 0
- 1
- None of these
Q. If sin y = x sin (a + y) and dydx=A1+x2−2xcos a′, then the value of A is
- 2
- cos a
- sin a
- None of these
Q. If sin (x+y)=loge(x+y), thendydx is equal to
- - 2
- 2
- 1
- - 1
Q.
For the curve represented implicitly as 3x−2y=1, the value of limx→∞(dydx) is
equal to 0
non existent
equal to 1
equal to log2 3
Q.
Let y be an implicit function of x defined by x2x−2xx cot y−1=0. Then y′(1) equals
log 2
- 1
- log 2
1
Q. The value of y′′(1) if x3−2x2y2+5x+y−5=0 when y(1)=1, is equal to
- 8
- 227
- −72128
- −82227
Q. If 2x+2y=2x+y, then dydx is equal to
- 2x−y.2y−11−2x
- (2x+2y)(2x−2y)
- 2x+y−2x2y
- (2x+2y)(1+2x+y)