Indeterminate Forms
Trending Questions
Q.
The value of limx→∞[√x+√x+√x−√x]is.
1/2
1
0
-1/2
Q. limx→∞(1n3+1+4n3+1+9n3+1+……+n2n3+1) is equal to
Q.
The value of limn→∞3n+2n3n−2nis
- −1
- 1
- 0
- ∞
Q.
If denotes the fractional part of the number , then is equal to:
Q. Evaluate the limit:
limx→1x3+3x2−6x+2x3+3x2−3x−1
limx→1x3+3x2−6x+2x3+3x2−3x−1
Q.
The weight of a body on the surface of the earth is 12.6 N. When it is raised to a height half the radius of the earth, its weight will be
Q.
Let be defined as . Then, is equal to ______
Q.
Let f be a biquadratic function of x given by f(x)=Ax4+Bx3+Cx2+Dx+E, where A, B, C, D, E∈R and A≠0. If limx→0(f(−x)2x3)1x=e−3, then
- A+4B=0
- A−3B=0
- f(1)=8
- f′(1)=−30
Q. If L=limx→−∞√25x2−3x+5x, then the value of [1L] is
(where [.] denotes greatest integer function)
(where [.] denotes greatest integer function)
Q.
The range of is a subset of.....
Q.
limx→ 0eαx−eβxx=
Q.
limx→0(cosx+asinbx)1x
Q. The value of limx→∞(p1/x+q1/x+r1/x+s1/x4)3x, where p, q, r, s>0 is equal to
- (pqrs)3
- (pqrs)3/2
- pqrs
- (pqrs)3/4
Q. Evaluate the limit:
limx→1x4−3x3+2x3−5x2+3x+1
limx→1x4−3x3+2x3−5x2+3x+1
Q. limx→∞[(x2+1x)e1/x−x−x2] is equal to
- 14
- 2
- 18
- 12
Q.
Which of the following limit is not in the indeterminant form ?