Integration as Antiderivative
Trending Questions
Q.
What is differentiation in simple words?
Q. Let f:[0, 1]→R be such that f(xy)=f(x)⋅f(y), for all x, y∈[0, 1], and f(0)≠0. If y=y(x) satisfies the differential equation, dydx=f(x) with y(0)=1, then y(14)+y(34) is equal to :
- 2
- 5
- 3
- 4
Q.
A differentiable function is defined for all, and satisfies , for all. The value of is
Q. If y=xtany, then dydx is equal to
- xyx−x2−y2
- yx−x2−y2
- tany1−xsec2y
- y1−xsec2y
Q.
If , then
Q.
If:are arbitrary constants, then
Q.
Find if .
Q.
The value of is
None of these
Q. Find the multiplicative inverse of √5+3i
Q. If f(x)=ax5+bx3+cx+d is an odd function, then
- a=0
- b=0
- c=0
- d=0
Q. Differentiate the function sin3x+cos6x w.r.t. x
Q.
The maximum slope of the curve is
None of these
Q.
What is the meaning of partial integration?
Q. If z=x+iy satisfies |z|−2=0 and |z−i|−|z+5i|=0, then
- x2−y+3=0
- x+2y−4=0
- x2+y−4=0
- x+2y+4=0
Q. If n is a positive integer for the function f(x)=5x(x−2)n, x∈[0, 2]. By Rolle's theorem value of c is 15, then n is equal to
- 3
- 6
- 9
- 10
Q. If y=e√cotx, then dydx=
- −e√cotx×cosec2x2√cotx
- e√cotx×cosecx2√cotx
- −ecotx×cosec2x2√cotx
- −e√cotx×cosec2x√cotx
Q. If y=tan(x∘+45∘), then dydx=
- π180sec2(x∘+45∘)
- sec2(x∘+45∘)
- π180sec2(x+45∘)
- π4sec2(x∘+45∘)
Q.
∫ekx [f(kx) + f'(kx)]dx will be equal to 1kekx f(kx) + C only when k = 1.
True
False
Q. If f(x)=⎧⎨⎩x, x<01, x=0x2, x>0, then limx→0f(x) is equal to:
- 0
- 1
- 2
- does not exist
Q. Cos 9A=sinA and 9A<90^°, then value of tanA?
Q. If y=esin√x, then dydx=
- ecos√xsin√x2√x
- esin√x2√x
- esin√xcos√x2√x
- esin√xcos√x√x
Q. The value of constants m and c for which y=mx+c is a solution of the differential equation D2y+3Dy+4y=4x
(D2y=d2ydx2, Dy=dydx)
(D2y=d2ydx2, Dy=dydx)
- m=−1
- c=−34
- c=34
- m=1
Q. The solution of differential equation (2x−y+1)dx+(2y−x+1)dy=0 is
(where c is integration constant)
(where c is integration constant)
- (y−1)2−(y+1)(x+1)+(x−1)2=c2
- (y+1)2−(y+1)(x+1)+(x+1)2=c2
- (y+1)2−(y−1)(x−1)+2(x+1)2=c2
- 3(y+1)2−(y+1)(x+1)+2(x+1)2=c2
Q. If f(x) is invertible and twice differentiable function satisfying f′(x)=f(x)∫0f−1(t)dt, ∀ x∈R and f′(0)=1, then f′(1) can be
- e
- e2
- 1e
- √e
Q. For x∈[−2π, 2π], f(x)=sinx;
g(x)=cosx. Then, select the correct statements.
g(x)=cosx. Then, select the correct statements.
- f(−x) & −g(x) will have 4 points of intersection
- f(x) & g(x) will have 4 points of intersection
- f(−x) & g(x) will have 4 points of intersection
- f(x) & −g(x) will have 4 points of intersection
Q. Find dydx, if y=sin−1x+sin−1√1−x2, 0<x<1
Q. ∫e2x−1e2x+1dx is equal to
(where C is constant of integration)
(where C is constant of integration)
- 12ln|e2x−e−2x|+C
- ln|ex+e−x|+C
- ln|e2x+e−2x|+C
- ln|ex−e−x|+C
Q.
What is integration in simple words?
Q. Differentiate the function cos(acosx+bsinx) w.r.t. x for some constants a and b.
Q. The value of ∫cot4x dx is
- cot3x3+cotx+x+C
- 13cotx+C
- −cot3x3+cot2+x+C
- −cot3x3+cotx+x+C