Integration of Trigonometric Functions
Trending Questions
Q.
Find the integration of .
Q.
Prove that:
Q. Solve sin2x−sin4x+sin6x=0
Q.
Find the value of
Q.
If , where , then is equal to
Q. If f(x)=|cosx−sinx|, then f′(π6) is equal to
- −12(1+√3)
- 12(1+√3)
- −12(1−√3)
- 12(1−√3)
Q.
The maximum and minimum values of the function is
,
,
,
,
Q.
If , then lies in the
first quadrant
second quadrant
third quadrant
fourth quadrant
Q.
If , then
Q. If ∫√1+cosec x dx=f(x)+C, where C is a constant of integration, then f(x) is equal to
- cos−1(1−2sinx)
- sin−1(1−2sinx)
- −2sin−1(1−2sinx)
- cos−1(1+2sinx)
Q. If f(x)=∫ex(21−tanx+tan2(x+π4)) dx, where f(3π4)=0. Then the value of ln(f(π)) is
Q. If cosA+sinB=m and sinA+cosB=n, prove that 2sin(A+B)=m2+n2−2.
Q.
∫[f(x)g′′(x)−f"(x)g(x)]dx is equal to
f(x)g′(x)
f′(x)g(x)−f(x)g′(x)
f(x)g′(x)−f′(x)g(x)
f(x)g′(x)+f′(x)g(x)
Q. If ∫dθ(cos2 θ(tan2θ+sec2θ)=λtanθ+2loge|f(θ)|+C where C is constant of integration, then the ordered pair (λ, f(θ)) is equal to:
- (−1, 1−tanθ)
- (−1, 1+tanθ)
- (1, 1+tanθ)
- (−1, 1−tanθ)
Q. ∫cosx+√31+4sin(x+π3)+4sin2(x+π3) dx is
where c is constant of integration
where c is constant of integration
- cosx1+2sin(x+π3)+c
- secx1+2sin(x+π3)+c
- sinx1+2sin(x+π3)+c
- 12tan−1(1+2sin(x+π3))+c
Q.
Prove the following;
2sin−135=tan−1247
Q.
The product of all values of
Q. The equation of the tangent to the curve
y=sin−12x1+x2 at x=√3
y=sin−12x1+x2 at x=√3
- y=−x2
- y−π3=−x2
- y−π3=12(x−√3)
- y−π3=−12(x−√3)
Q.
Prove that:
.
Q. If θ1 and θ2 be respectively the smallest and the largest values of θ in (0, 2π)−{π} which satisfy the equation, 2cot2θ−5sinθ+4=0, then θ2∫θ1cos23θ dθ is equal to :
- 2π3
- π3
- π3+16
- π9
Q. If ∫cos 8x+1tan 2x−cot 2xdx=a cos 8x+C, then
- a=−116
- a=18
- a=116
- a=−18
Q. Find the principal value of cos−1(−12).
Q.
If , then
None of these
Q. The value of the integral ∫1x4−1dx is
(where C is an arbitrary constant)
(where C is an arbitrary constant)
- 14ln∣∣∣x−1x+1∣∣∣+12tan−1x2+C
- 12ln∣∣∣x−1x+1∣∣∣−12tan−1x+C
- 12ln∣∣∣x−1x+1∣∣∣+14tan−1x2+C
- 14ln∣∣∣x−1x+1∣∣∣−12tan−1x+C
Q. If Φ(x)=∫dxsin12x cos72x, then Φ(π4)−Φ(0)=
- 0
- 125
- 65
- 95
Q. Find the integral: ∫(2x−3cosx+ex)dx
Q.
If , then
Q. The length of tangent to the curve x=a(cost+log(tant2)), y=asint, at any point is :
- |a|
- |ax|
- |ay|
- xy