Integration of a Determinant
Trending Questions
Q. The number of elements in the set {A=(ab0d):a, b, d∈{−1, 0, 1} and (I−A)3=I−A3},
where I is 2×2 identity matrix, is
where I is 2×2 identity matrix, is
Q. If xϕ(x)=x∫5(3t2−2ϕ′(t))dt, x>−2, and ϕ(0)=4, then ϕ(2) is
Q. The sum of all the local minimum values of the twice differentiable function f:R→R defined by f(x)=x3−3x2−3f′′(2)2x+f′′(1) is:
- −22
- 5
- −27
- 0
Q. Let f(x)=sin(π[x−π])1+[x]2 where [.] denotes the greatest integer function. Then f(x) is
- discontinuous at integral points
- continuous everywhere but not differentiable
- differentiable once but f′′(x), f′′′(x), ...do not exist
- differentiable for all x
Q. Let f(x)=1+1∫0(xey+yex)f(y)dy where x and y are independent variables. If complete solution set of x for which the function h(x)=f(x)+3x is strictly increasing is (−∞, k), and [.] denotes the greatest integer function, then [43ek] equals to
- 12
- 2
- 3
- 9
Q. Let f be a function satisfying the equation f(x)+31∫−1(xy−x2y2)f(y)dy=x3. Then the value of f(5) is
Q. If f(x)=∣∣
∣∣12x3x23a27139∣∣
∣∣ and ∫30f(x)dx=0, then a is equal to
- 3
- 6
- 9
- any real number
Q. If f(x+y)=f(x)+f(y) ∀ x, y∈R and f(4) is the sum to infinite terms of the series 2, 1, 12, 14, …., then the image of y=ln(x+3) with respect to y=f(x) is:
- ex+3
- ex−3
- ex−3
- 3−ex
Q. Let a matrix A=[aij]m×n is defined as aij=mn and m2−1≥0, n2−9≤0. Then matrix A can be a
- Null matrix
- Scalar matrix
- Row matrix
- Column matrix
Q. lf ∣∣
∣
∣∣xnxn+2xn+3ynyn+2yn+3znzn+2zn+3∣∣
∣
∣∣ =(x−y)(y−z)(z−x)(1x+1y+1z), then the value of n is
- −2
- −1
- 2
- 1
Q. If px4+qx3+rx2+sx+t=∣∣
∣∣x2+3xx−1x+3x+12−xx−3x−3x+43x∣∣
∣∣ then t is equal to
- 33
- 0
- 21
- none
Q. Let f be a real-valued function defined on the interval (0, ∞) by f(x)=lnx+x∫0√1+sint dt. Then which of the following statement(s) is/are true?
- There exists α>1 such that |f′(x)|<|f(x)| for all x∈(α, ∞)
- f′(x)exists for all x∈(0, ∞) and f′ is continuous on (0, ∞), but not differentiable on (0, ∞)
- There exists β>0 such that |f(x)|+|f′(x)|≤β for all x∈(0, ∞)
- f′′(x)exists for all x∈(0, ∞)
Q. If f(x)=∣∣
∣∣x2−4x+62x2+4x+103x2−2x+16x−22x+23x−1123∣∣
∣∣, then
- 3∫−3x2sinx1+x6.f(x)dx=0
- f(x) is a constant function
- f′(x) is a constant function
- 3∫−3x2sinx1+x6.f(x)dx=2
Q.
Let f(x)=∣∣
∣
∣∣a(x)b(x)c(x)m(x)n(x)l(x)g(x)h(x)k(x)∣∣
∣
∣∣ then
∫a0f(x) is∣∣
∣
∣∣∫a0a(x)∫a0b(x)∫a0c(x)∫a0m(x)∫a0n(x)∫a0l(x)∫a0g(x)∫a0h(x)∫a0k(x)∣∣
∣
∣∣
False
True
Q.
Let f(x)=∣∣ ∣ ∣∣a(x)b(x)c(x)m(x)n(x)l(x)g(x)h(x)k(x)∣∣ ∣ ∣∣then∫a0f(x) is∣∣ ∣ ∣∣∫a0a(x)∫a0b(x)∫a0c(x)∫a0m(x)∫a0n(x)∫a0l(x)∫a0g(x)∫a0h(x)∫a0k(x)∣∣ ∣ ∣∣
F
T
Q. Paragraph for below question
नीचे दिए गए प्रश्न के लिए अनुच्छेद
If A is a square matrix, then determinant of A is represented by |A|. The value of |A| is equal to zero, if any two rows or columns are identical.
Let, A=⎡⎢⎣x374x−1741x+5⎤⎥⎦, then
यदि A एक वर्ग आव्यूह है, तब A के सारणिक को |A| द्वारा दर्शाया जाता है। |A| का मान शून्य है, यदि कोई भी दो पंक्तियाँ या दो स्तम्भ समरूप हैं।
माना, A=⎡⎢⎣x374x−1741x+5⎤⎥⎦, तब
Q. |A| is a polynomial of degree
प्रश्न - |A| एक बहुपद है जिसकी घात है
नीचे दिए गए प्रश्न के लिए अनुच्छेद
If A is a square matrix, then determinant of A is represented by |A|. The value of |A| is equal to zero, if any two rows or columns are identical.
Let, A=⎡⎢⎣x374x−1741x+5⎤⎥⎦, then
यदि A एक वर्ग आव्यूह है, तब A के सारणिक को |A| द्वारा दर्शाया जाता है। |A| का मान शून्य है, यदि कोई भी दो पंक्तियाँ या दो स्तम्भ समरूप हैं।
माना, A=⎡⎢⎣x374x−1741x+5⎤⎥⎦, तब
Q. |A| is a polynomial of degree
प्रश्न - |A| एक बहुपद है जिसकी घात है
- 1
- 2
- 3
- 4
Q. A=⎡⎢⎣1−1121−3111⎤⎥⎦ and B=⎡⎢⎣422−50α1−23⎤⎥⎦ If B is the adjoint of A then α equals
- 2
- −1
- −2
- 5
Q. If the system of equations ax + y = 3, x + y = 2 and 2x – y = 1 is consistent, then the value of a is equal to
यदि समीकरणों का निकाय ax + y = 3, x + y = 2 तथा 2x – y = 1 संगत हैं, तब a का मान बराबर है
यदि समीकरणों का निकाय ax + y = 3, x + y = 2 तथा 2x – y = 1 संगत हैं, तब a का मान बराबर है
- 0
- 1
- –1
- 2
Q. If ∣∣
∣∣x2323x3x2∣∣
∣∣=∣∣
∣∣1x4x1441x∣∣
∣∣=∣∣
∣∣05x5x0x05∣∣
∣∣=0 then the value x equals (xϵR)
- 0
- 5
- -5
- 8
Q. If f(x+y)=f(x)+f(y) ∀ x, y∈R and f(4) is the sum to infinite terms of the series 2, 1, 12, 14, …., then the image of y=ln(x+3) with respect to y=f(x) is:
- ex+3
- ex−3
- ex−3
- 3−ex
Q. Let f be a function satisfying the equation f(x)+31∫−1(xy−x2y2)f(y)dy=x3. Then the value of f(5) is
Q. The anti-derivative of(√x+1√x) equals to (where C is the constant of integration)
- (13)x13+(2)x12+C
- (23)x23+(12)xx+C
- (23)x32+(2)x12+C
- (32)x32+(12)x12+C
Q. Paragraph for below question
नीचे दिए गए प्रश्न के लिए अनुच्छेद
If A is a square matrix, then determinant of A is represented by |A|. The value of |A| is equal to zero, if any two rows or columns are identical.
Let, A=⎡⎢⎣x374x−1741x+5⎤⎥⎦, then
यदि A एक वर्ग आव्यूह है, तब A के सारणिक को |A| द्वारा दर्शाया जाता है। |A| का मान शून्य है, यदि कोई भी दो पंक्तियाँ या दो स्तम्भ समरूप हैं।
माना, A=⎡⎢⎣x374x−1741x+5⎤⎥⎦, तब
Q. If |A| = 0, then one of the possible value of x is
प्रश्न - यदि |A| = 0, तब x का कोई एक संभावित मान है
नीचे दिए गए प्रश्न के लिए अनुच्छेद
If A is a square matrix, then determinant of A is represented by |A|. The value of |A| is equal to zero, if any two rows or columns are identical.
Let, A=⎡⎢⎣x374x−1741x+5⎤⎥⎦, then
यदि A एक वर्ग आव्यूह है, तब A के सारणिक को |A| द्वारा दर्शाया जाता है। |A| का मान शून्य है, यदि कोई भी दो पंक्तियाँ या दो स्तम्भ समरूप हैं।
माना, A=⎡⎢⎣x374x−1741x+5⎤⎥⎦, तब
Q. If |A| = 0, then one of the possible value of x is
प्रश्न - यदि |A| = 0, तब x का कोई एक संभावित मान है
- Zero
शून्य - 4
- 1
- –2
Q.