Inverse Function
Trending Questions
Q. Find the value of sin31π3.
Q. Which of the following is the principal value branch of tan−1x
- (−π2, π2)
- [−π2, π2]
- (−π2, π2)−{0}
- (0, π)
Q. e(cos2x+cos4x+cos6x+⋯∞)loge2 satisfies the equation t2–9t+8=0, then the value of 2sinxsinx+√3cosx, (0<x<π2) is :
- 32
- 2√3
- 12
- √3
Q. Complete solution set [cot−1x]+2[tan−1x]=0, where [.] denotes the greatest integer function, is
- (0, cot1)
- (0, tan1)
- (tan1, ∞)
- (cot1, tan1)
Q. If cot−1n2−10n+21.6π>π6, n∈N, then n can be
- 3
- 2
- 4
- 8
Q.
If 8x=π, show that cos7x + cosx =0
Q. The range of the function, f(x)=cot−1x+sec−1x+cosec−1x is
- (π2, 3π2)
- (π2, 3π4]∪[5π4, 3π2)
- [π2, π)∪(π, 3π2]
- (π2, π)∪(π, 3π2)
Q. If g(x)=(4cos4x−2cos2x−cos4x2−x7)1/7 for x∈R, then the value of g(g(100)) is equal to
- value of 50(cos21∘−cos22∘sin3∘sin1∘)
- value of 2003∞∑n=1(5n−2n10n)
- value of 4003∞∑n=1(5n−2n10n)
- value of 50⎛⎜ ⎜ ⎜⎝12⎛⎝1−a−b2(1−b)⎞⎠⎞⎟ ⎟ ⎟⎠ if 60a=3 and 60b=5
Q.
Prove that cos4x = cos2x
Q. If f(x)=2sin2x+2sinx+3sin2x+sinx+1, then the number of integer(s) in the range of f is
- 7
- 3
- 1
- 4
Q. The domain of the function f(x)=sin−1(5x) is
- [−π5, π5]
- [−π10, π10]
- R
- [−15, 15]
Q. If cot−1[(cos α)1/2]−tan−1[(cos α)1/2]=x, then sinx equals
- tan2(α2)
- tan α
- cot(α2)
- cot2(α2)
Q.
The value of 3+cot76∘cot16∘cot76∘+cot16∘ is
The value of 3+cot76∘cot16∘cot76∘+cot16∘ is
- tan44∘
- cot46∘
- tan2∘
- tan46∘
Q. Evaluate each of the following:
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
Q. If cos−1x+cos−1y+cos−1z=π, then x2+y2+z2+2xyz is equal to
- 0
- -1
- 1
- 5
Q. List - 1List - 2(I)If f(x)=e[x] and g(x)=x2−4x+3x2−2x+3, (P) 0then number of integer(s) in the range of (f∘g)(x) is(where [.] represents the greatest integer function)(II)4∫0z18−117∑n=0zn dz(Q) 1(III) In a ΔXYZ, y2sin(2Z)+z2sin(2Y)=2yz, (R) 2where y=15, z=8. Then the length of inradius is(IV)The number of integers in the range of the function(S) 3f(x)=√sin−1x−cos−1x+√tan−1x−cot−1x is (T) 4(U) 5
Which of the following has CORRECT pair of combination?
Which of the following has CORRECT pair of combination?
- (I)→(T), (III)→(P)
- (I)→(Q), (II)→(T)
- (II)→(U), (IV)→(R)
- (III)→(S), (IV)→(Q)
Q. The principal value of sin−1(−√32) is
- π3
- −π3
- π6
- −π6
Q. The values of x for which tan−1x>cot−1x is
- x∈(0, 1)
- x∈(−1, 1)
- x∈(−∞, −1)
- x∈(1, ∞)
Q.
If cos(sin−125+cos−1 x)=0, then x is equal to
(a) 15 (b) 25 (c) 0 (d) 1
Q. Consider two functions f and g defined by f(x)=sin−1x+tan−1x and g(x)=cos−1x+cot−1x. Let A and B be sets of non-negative integers in Rf and Rg respectively, where Rf is the range of f and Rg is the range of g. Then
- number of real solutions of f(x)=g(x) is one.
- if Rf is [aπ, bπ] and Rg is [cπ, dπ], then c+db−a=43.
- number of one-one functions from A to B is 60.
- number of values of x satisfying |f(x)|+|g(x)|=π is infinitely many.
Q. If cos−1x+cos−1y+cos−1z=π, then
- x2+y2+z2+xyz=0
- x2+y2+z2+2xyz=0
- x2+y2+z2+2xyz=1
- x2+y2+z2+xyz=1
Q. If cos−1x+cos−1y+cos−1z=π, prove that x2+y2+z2+2xyz=1
Q. If the range of the function f(x)=8(sin4x+cos4x−sinxcosx) ∀ x∈R is [a, b], then the value of (limx→a(3x+b−1)1/3−(b−1)1/3x−a)−1 is
Q. If ∫cos2x+sin2x(2cosx−sinx)2dx=−A1725x−25log|2cosx−sinx|+212−tanx+C then A is equal to
Q. The principal value of sin−1(−√32) is
- π3
- −π3
- π6
- −π6
Q. If y=tan−1(cosx−sinxcosx+sinx), then dydx=
- −1
- sin2π
- cos2x
- Zero
Q. The sum of three positive numbers α, β, γ is equal to π2. If ecotα, ecotβ and ecotγ form a geometric progression, then which of the following hold(s) good?
- ∑cotα=∏cotα
- 2cotβ=cotα+cotγ
- cotαcotγ=3
- 4∏cosα=∑sin2α
Q. The number of positive integral solutions of tan−1x+cos−1y√1+y2=sin−13√10 is
- 1
- 2
- 3
- 4
Q. If Sn=cot−1(3)+cot−1(7)+cot−1(13)+cot−1(21)+…n terms, then
- S10=tan−156
- S∞=π4
- S6=sin−135
- S20=cot−1(1.1)
Q. If the value of integral ∫sin4xcos2xdx=xp+sin2xq+sin4xr+sin6xs+C, for fixed constants p, q, r and s. Then the value of p+q+r+s4=
(where C is integration constant)
(where C is integration constant)