Parametric Differentiation
Trending Questions
Q. If x=secθ−cosθ, y=sec10θ−cos10θ and (x2+4)(dydx)2=k(y2+4), then k is equal to
- 1100
- 1
- 10
- 100
Q. If x=2cost−cot2t, y=2sint−sin2t, then d2ydx2 at t = π2 is
- −32
- 32
- −52
- 52
Q. If y=√(a−x)(x−b)−(a−b)tan−1√(a−xx−b), then dydx is equal to
- √(a−x)(x−b)
- 1√(a−x)(x−b)
- √(a−xx−b)
- √(x−ba−x)
Q. If x = a cos θ, y=b sin θ, then d3ydx3 is equal to
- None of the above
- (−3ba3)cosec4θ cot4θ
- (3ba3)cosec4θ cotθ
- (−3ba3)cosec4θ cotθ
Q. If y=1+t4 and x=3t3+t then what is dydx
Q. Given the parametric equations x=f(t), y=g(t), then d2ydx2 equals
- d2ydt2.dxdt−dydtd2xdt2(dxdt)2
- dxdtd2ydt2−d2xdt2dydt(dxdt)3
- d2ydt2d2xdt2
- d2ydt2.dxdt−dydtd2xdt2(dxdt)
Q. If t=(1−cosθ)(1+cosθ) and s=2tan(θ2), then find dtds at θ=π2
- 2
- 12
- 0
- 1