Period of a Function
Trending Questions
Q. The period of the function f(x) = sin 3x is
Q.
If is an odd periodic function with period , then is equal to.
Q. If [.] denotes the greatest integer function, then fundamental period of the function f(x)=1−2(x−[x]) is
- 12
- −12
- 1
- f(x) is non-periodic
Q. The fundamental period of the function f(x)=sin(π4[x])+tan(π2[x])+[x]+[x+13] +[x+23]−3x is
[where [.]→the greatest integer function ]
[where [.]→the greatest integer function ]
- 8
- 2
- 13
- Not periodic
Q. If f(x) is a function that is odd and even simultaneously, then f(3)- f(2) is equal to
- 2
- 1
- -1
- 0
Q.
Period of a function is always a positive integer.
True
False
Q. If f (x) +f (x+a) + f(x+2a) +....+ f (x+na) = constant; ∀x ϵR and a>0 and f(x) is periodic, then period of f(x), is
- (n+1) a
- en+1a
- na
- ena
Q.
Period of a function is always a positive integer.
True
False
Q. Given the graph of y=5cos(2x+1); ∀ x∈R. Select the correct options.
- Range:[−5, 5]
- Period: π
- Range: [−1, 1]
- Period: 4π
Q.
Given f(x) defined on f: R → R is a periodic function with the fundamental period 2 then f(3) is not equal to -
f(2)
f(9)
f(5)
f(-1)
Q. If cos (A−B)=sin(A+B)=12, where A and B are positive, then smallest positive value of A+B (in degrees) is
- 450
- 1050
- 1500
- 600
Q.
Period of a function is always a positive integer.
True
False
Q. If f(x)is an odd periodic function with period 2, then f(4) equals
- 2
- 4
- -4
- 0
Q. The fundamental period of the function f(x)=2cos 13(x−π) is
- 6 π
- 4 π
- 2 π
- π
Q.
If ∝, β are the roots of the equation x2 - ax + b = 0, then α4+α3β+α2β2+αβ3+β4
a4 + 3a2b + b2
a4 - 3a2b + b2
a3 + 3a2b + b2
None of these
Q. The period of the function |sinx|+|cosx| is
- π2
- 2π
- π
- 4π
Q. If f (x) +f (x+a) + f(x+2a) +....+ f (x+na) = constant; ∀x ϵR and a>0 and f(x) is periodic, then period of f(x), is
- (n+1) a
- en+1a
- na
- ena
Q. The fundamental period of the function f(x)=sin(π4[x])+tan(π2[x])+[x]+[x+13] +[x+23]−3x is
[where [.]→the greatest integer function ]
[where [.]→the greatest integer function ]
- 8
- 2
- 13
- Not periodic
Q.
Given f(x) defined on f: R → R is a periodic function with the fundamental period 2 then f(3) is not equal to -
f(2)
f(9)
f(5)
f(-1)
Q. Which of the following statements is (are) CORRECT?
- The fundamental period of the function f(x)=cosec(x2)+sec(x3)+cot(x4)+tan(x5)+cos(x6)+sin(x7) is 420π.
- If f is a function such that f(s)=f(t), then s=t.
- A vertical line intersects the graph of a function at most once.
- If h(x)={x2, x≤0x, x>0, then h(h(x))=h(x) ∀ x∈R.
Q. The fundamental period of the function f(x)=sin(π4[x])+tan(π2[x])+[x]+[x+13] +[x+23]−3x is
[where [.]→the greatest integer function ]
[where [.]→the greatest integer function ]
- 8
- 2
- 13
- Not periodic
Q. Find the greatest & the least values of the following functions in the given interval, if they exist. y=sin2x−x[−π2, π2]
- π2 and −π2
- None of the above
- π and −π
- 3π2 and −3π2
Q. The period of the function f(x) = sin 3x is
- 2π
- 2π3
- 6π
- 8π
Q.
How do you evaluate ?
Q. Let f(x)=sinx+ex+x, then which of the following(s) is(are) true about f(x)
- increasing for all x<0
- decreasing for all x∈R−{0}
- increasing at x=0
- neither increasing nor decreasing at x=0
Q. Which of the following is least ? (All angles have been measured in radians)
- sin3
- sin1
- sin7
- sin2