Polar Representation of a Complex Number
Trending Questions
Q. Number of complex numbers z such that |z|=1 and ∣∣∣z¯z+¯zz∣∣∣=1 is
(argz∈[0, 2π))
(argz∈[0, 2π))
- 4
- 6
- 8
- more than 8
Q.
If then at .
Q. If ∣∣∣z1z2∣∣∣=1 and arg(z1z2)=0, then
- z1=z2
- |z2|2=z1z2
- z1z2=1
- |z1+z2|=0
Q. If |z|=1 and z≠±1, then all the values of z1−z2 lie on
- The X - axis
- The Y - axis
- a line not passing through the origin
- |z|=√2
Q.
Find z, ~if |z|=4 and arg (z)=5π6
Q. Let y=f(x) be a thrice differentiable function defined on R such that f(x) = 0 has atleast 7 distinct zeros, then minimum number of zeros of the equation f(x)+9f′(x)+27f′′(x)+27f′′′(x)=0 is
Q. Suppose the limit
L=limn→∞√n1∫01(1+x2)n dx
exists and is larger than 12. Then
L=limn→∞√n1∫01(1+x2)n dx
exists and is larger than 12. Then
- 12<L<2
- 2<L<3
- 3<L<4
- L≥4
Q. In a Δ ABC if b = 3, c = 5 and cos(B - C) = 725, then find the value of tanA2
- 1
- 13
- 15
- 17
Q.
If , then is equal to:
Q. Let z1, z2, z3 be three distinct complex numbers lying on a circle whose centre is at the origin. If zi+zjzk, where i, j, k∈{1, 2, 3} and i≠j≠k are real numbers, then the value of 4(z1×z2×z3) is
Q.
The principle value of the amplitude of (1 + i) is
π4
π12
3π4
π
Q.
If xr=cos(π3r)+isin(π3r), then x1x2x3.......to∞is:
-1
-i
1
i
Q. If α≤2sin−1x+cos−1x≤β, then
- α=−π2, β=π2
- α=−π2, β=3π2
- α=0, β=π
- α=0, β=2π
Q. Let z1, z2, z3 be three distinct complex numbers lying on a circle whose centre is at the origin. If zi+zjzk, where i, j, k∈{1, 2, 3} and i≠j≠k are real numbers, then the value of 4(z1×z2×z3) is
Q. If the lines a¯¯¯z+¯¯¯az+b=0 and c¯¯¯z+¯¯cz+d=0 are mutually perpendicular, where a and c are non zero complex numbers, while b and d are real numbers, then
- a¯¯¯a+c¯¯c=0
- a¯¯c is purely imaginary
- arg(ac)=±π2
- a¯¯¯a=c¯¯c
Q.
Express the following complex numbers in the form r(cos θ+i sin θ).
(i) 1+i tan θ(ii) tan α−i(iii) 1−sin α+i cos α(iv) 1−icosπ3+i sinπ3
Q. Number of non negative integral solutions of A+B+C+D=12
where A, B>0 and 0<D<5 is
where A, B>0 and 0<D<5 is
Q. If α, βϵ(π2, π) and α<β, then which one of the following is true?
- ecos α−cos β<αβ
- ecos β−cos α<βα
- ecos α−cos β<βα
- ecos β−cos α<αβ
Q. If (1−i√3)2(z)(4i)=(1+i√3), then Amp z is
- π
- π3
- π2
- 0
Q. Let α and β be the roots of x2+x+1=0. If n be positive integer, then αn+βn is
- 2cos2nπ3
- 2sin2nπ3
- 2cosnπ3
- 2sinnπ3
Q.
Write (i25) in polar form.
Q.
If a=cosα+isinα, b=cosβ+isinβ,
c=cosγ+isinγ and bc+ca+ab=1, Then
cos(β-γ)+cos(γ-α)+cos(α-β) is equal to
- 32
- -32
- \N
- 1
Q. The principal amplitude of (sin40∘+icos40∘)5 is
- 70∘
- −110∘
- 110∘
- −70∘
Q. If α+β=900 and α=2β, then cos2α+sin2β equals to
- 12
- 2
- 0
- 1
Q. If z1=a+ib and z2=c+id are complex numbers such that |z1|=|z2|=1 and Re(z1¯z2)=0, then the pair of complex numbers w1=a+ic and w2=b+id satisfies
- |w1|=1
- |w2|=1
- Re(w1¯w2)=0
- All of these
Q. If Z=1−√3i1+√3i then find arg(z).
- −2π3
- 2π5
- 2π3
- π3
Q. Change to polar coordinates the equation: x2+y2=2ax
Q. If cosα+2cosβ+3cosγ=sinα+2sinβ+3sinγ=0, then the value of sin3α+8sin3β+27sin3γ is
- sin(α+β+γ)
- 3sin(α+β+γ)
- 18sin(α+β+γ)
- sin(α+2β+3γ)
Q. If cosθ=915 then find tanθ