Product of Trigonometric Ratios in Terms of Their Sum
Trending Questions
Q. The value of sin10∘sin30∘sin50∘sin70∘ is :
- 132
- 116
- 118
- 136
Q.
If , then is equal to ?
Q.
If cos(A−B)cos(A+B)+cos(C+D)cos(C−D)=0, prove that tanA tanB tanC tanD=−1
Q. Find the value of tan−1[2cos(2sin−112)].
Q.
sin 6∘ sin 42∘ sin 66∘ sin 78∘=116
Q.
cos 6∘ cos 42∘ cos 66∘ cos 78∘=116
Q. The value of cosπ22⋅cosπ23⋅ ... ⋅cosπ210⋅sinπ210 is :
- 11024
- 12
- 1512
- 1256
Q. Find an anti derivative (or integral) of the given function by the method of inspection.
sin2x
sin2x
Q.
If u=√a2cos2θ+b2sin2θ+√a2sin2θ+b2cos2θ, then the difference between the maximum and minimum values of u2 is given by
Q.
cos 7∘ cos 14∘ cos 28∘ cos 56∘=sin 68∘16 cos 83∘
Q. If x=cos θ+isin θ and y=cosϕ+isinϕ, then xmyn+x−my−n , is equal to
Q. If in a △ABC, tanA2, tanB2, tanC2 are in H.P., then the minimum value of cotB2 is
- 3
- 2
- √3
- √2
Q. If sinθ=nsin(θ+2α), then the value of tan(θ+α) is
- 1−n1+ncotα
- 1−n1+ntanα
- 1+n1−ntanα
- 1+n1−ncotα
Q. The value of sin1∘+sin3∘+sin5∘+sin7∘cos1∘cos2∘sin4∘ is
Q. The value of sec210∘+cosec220∘+cosec240∘ is
Q. The value of sin−1x+sin−11x+cos−1x+cos−11x where ever defined is
- π
- π2
- 3π2
- 2π
Q.
Write the value of the expression
1−4sin10∘sin70∘2sin10∘
Q. The value of sin17π36cos11π36cos13π36sin11π36sin13π36cos17π36 is
- 14
- 12
- 116
- 164
Q. Prove that: sin(n+1)x⋅sin(n+2)x+cos(n+1)x⋅cos(n+2)x=cosx
Q.
The value of tan 130∘ tan140∘ is equal to
Q. The value of tan20∘tan80∘cot50∘ is
- √3
- 1√3
- √34
- 12√3
Q.
Show that:
(i) sin 50∘ cos 85∘=1−√2sin 35∘2√2
(ii) sin 25∘ cos 115∘=12(sin 140∘−1)
Q. The value of the expression sin2xcos3x+sin3xcos8x+sin5xcos16xsin2xsin3x+sin3xsin8x+sin5xsin16x is
- cot11x
- tan11x
- cot10x
- tan10x
Q. Find an anti derivative (or integral) of the given function by the method of inspection.
sin2x−4e3x
sin2x−4e3x
Q. Find the values of other five trigonometric functions if cosx=−12, x lies in third quadrant
Q. If tan−1(x−1x−2)+tan−1(x+1x+2)=π4, then find the value of x.
Q. If sin2A+sin2B=12 and cos2A+cos2B=32, then the value of |cos(A−B)| is
- √58
- √38
- 58
- 38
Q. In ΔABC, if 3tanA2tanC2=1, then a, b, c are in:
- A.P
- G.P
- H.P
- A.G.P
Q. sinA+sin2A+sin4A+sin5AcosA+cos2A+cos4A+cos5A=
- tan2A
- cot3A
- tan3A
- tan4A
Q. If A=45∘, then the value of cos2B+sin2(A+B)+2sinAsin(180∘+B)cos(360∘+A+B) is
- 0
- 12
- 32
- 2