Properties of Argument
Trending Questions
Q. Let θ1, θ2, ⋯, θ10 be positive valued angles (in radian) such that θ1+θ2+⋯+θ10=2π. Define the complex numbers z1=eiθ1, zk=zk−1eiθk for k=2, 3⋯10, where i=√−1. Consider the statements P and Q given below:
P:|z2−z1|+|z3−z2|+⋯+|z10−z9|+|z1−z10|≤2π
Q:|z22−z21|+|z23−z22|+⋯+|z210−z29|+|z21−z210|≤4π
P:|z2−z1|+|z3−z2|+⋯+|z10−z9|+|z1−z10|≤2π
Q:|z22−z21|+|z23−z22|+⋯+|z210−z29|+|z21−z210|≤4π
- P is TRUE and Q is FALSE
- Q is TRUE and P is FALSE
- Both P and Q are TRUE
- Both P and Q are FALSE
Q.
The maximum value of in the interval is attained at
Q.
The argument of 1−i1+i is
π2
3π2
−π2
5π2
Q. For a non-zero complex number z, let arg(z) denote the principal argument with −π<arg(z)≤π. Then which of the following statement(s) is (are) FALSE?
- arg(−1−i)=π4, where i=√−1
- The function f:R→(−π, π], defined by f(t)=arg(−1+it) for all t∈R, is continuous at all points of R, where i=√−1
- For any two non-zero complex numbers z1 and z2, arg(z1z2)−arg(z1)+arg(z2) is an integer multiple of 2π.
- For any three given distinct complex numbers z1, z2 and z3, the locus of the point z satisfying the condition arg((z−z1)(z2−z3)(z−z3)(z2−z1))=π,
lies on a straight line.
Q.
The amplitude of is
Q. Let z and w be two non- zero complex numbers such that |z|=|w| and arg(z)+arg(w)=π. Then the value of (z+¯¯¯¯w)10 is
Q.
Find the principal argument of (1+i√3).
Q. If x=91/3⋅91/9⋅91/27⋯∞;y=41/3⋅4−1/9⋅41/27⋯∞ and z=∞∑r=1(1+i)−r and the principal argument of the complex number p=x+yz is −tan−1√ab, then the value of a2+b2 is (a and b are coprime natural numbers)
Q. If z=(1+i)(1+2i)(1+3i)………(1+ni)(1−i)(2−i)(3−i)………(n−i), where i=√−1, n∈N, then principal argument of z can be -
- 0
- π2
- −π2
- π
Q.
Convert in polar form
Q.
The differential equation of the systems of all circles of radius in the -plane is
Q.
The principal argument of is
Q.
The value of is
Q. Let sinAsinB=sin(A−C)sin(C−B), where A, B, C are angles of a triangle ABC. If the lengths of the sides opposite these angles are a, b, c respectively, then
- a2, b2, c2 are in A.P.
- b2−a2=a2+c2
- b2, c2, a2 are in A.P.
- c2, a2, b2 are in A.P.
Q. The principal argument of [(1+i)5(1+√3i)2]−2i[√3−1−(√3+1)i] is
- 7π12
- π2
- 5π6
- −5π12
Q. The point of intersection of the curves arg(z−3i)=3π4 and arg(2z+1−2i)=π4 is
- Given curves do not intersect
- (32, 32)
- (34, 94)
- (94, 34)
Q. If cos α+2cosβ+3cosγ=sinα+2sinβ+3sinγ=0, then the value of sin 3α + 8sin 3β + 27 sin 3γ is
- 3sin (a + + )
- 18 sin (+ + )
- sin (+ + 3 )
- sin (a + b + )
Q.
If , then
Q. The principal argument of z=−3+3i is:
- π4
- −π4
- 3π4
- −3π4
Q. A point P(z1) lies on the curve |z|=2. A pair of tangents from the point P is drawn to the curve |z|=1 meeting it at points Q(z2) and R(z2). Then
- (4z1+1z2+1z3)(4¯¯¯¯¯z1+1¯¯¯¯¯z2+1¯¯¯¯¯z3)=9
- arg(z2z3)=2π3
- point with complex representation (z1+z2+z33) lies on the curve |z|=1
- point with complex representation (z12) lies on the curve |z|=1
Q. If z1 and z2 are conjugate to each other, and arg(−z1z2)=kπ, then k=
Q. If arg(z) denotes the principal argument of a complex number z, then the value of the expression arg(−i eiπ9.z2)+2arg(2i e−iπ18.¯z) is
- 0
- π2
- π
- arg(z)
Q. If z1 and z2 are non zero solutions of equation z2+z=i¯¯¯z where i=√−1 , then the value of |z1+z2| is
Q. If z=√3+i and w=3i
Then arg(zw) and argwz is
Then arg(zw) and argwz is
- arg(zw)=2π3, arg(wz)=π3
- arg(zw)=2π3, arg(wz)=2π3
- arg(zw)=π3, arg(wz)=π3
- arg(zw)=π3, arg(wz)=π5
Q. If arg(z1)=170∘ and arg(z2)=70∘, then the principal argument of z1z2 is
- 120∘
- −120∘
- −240∘
- 240∘
Q. For two complex numbers z1 and z2;(az1+b¯z1)(cz2+d¯z2)=(cz1+d¯z1)(az2+b¯z2) b≠0, d≠0 if
- ab=cd
- ad=bc
- |z1|=|z2|
- arg(z1)=arg(z2)
Q. In ΔABC, if a=2, b=3 and sinA=23, then cosC is equal to:
- 12
- 23
- 2√13
- 1√13
Q. Let z be a complex number lying in first or fourth quadrant of Argand plane satisfying |z−1|=1. If arg(z−1)=karg(z), then the value of k is
Q. If α and β are two distinct complex numbers satisfying |α|2β−|β2|α=α−β, then
(Here, arg(z) denotes the principal argument with −π<arg(z)≤π)
(Here, arg(z) denotes the principal argument with −π<arg(z)≤π)
- arg(αβ)=π
- α¯¯¯β=β¯¯¯¯α
- α¯¯¯β=1
- |α|=|β|