Properties of Composite Function
Trending Questions
Q. If a3=11√2+9√3, then a is
- √3+√2
- √2+√6
- √3+√6
- √3+√5
Q.
If find the value of and
Q. In an open interval (0, π2),
- cosx+xsinx<1
- cosx+xsinx<12
- cosx+xsinx>1
- no specific order relation can be ascertained between cosx+xsinx and 1
Q.
The function satisfies the functional equation for all real . Then value of is:
Q. Find the principal value of tan−1(−√3).
Q.
If find values of all other trigonometric ratios.
Q. Let f(x)=xex−1+x2+1 and g is either odd or even function. If fog is defined, then
- fog is odd function
- fog is even function
- f(x) is even function
- f(x) is odd function
Q. Let g:R→R be a differentiable function with g(0)=0, g′(0)=0 and g′(1)≠0. Let
f(x)=⎧⎨⎩x|x|g(x), x≠00, x=0
and h(x)=e|x| for all x∈R. Let (f∘h)(x) denotes f(h(x)) and (h∘f)(x) denotes h(f(x)). Then which of the following is (are) true?
f(x)=⎧⎨⎩x|x|g(x), x≠00, x=0
and h(x)=e|x| for all x∈R. Let (f∘h)(x) denotes f(h(x)) and (h∘f)(x) denotes h(f(x)). Then which of the following is (are) true?
- f is differentiable at x=0
- h is differentiable at x=0
- f∘h is differentiable at x=0
- h∘f is differentiable at x=0
Q. Let J=1∫0x1+x8 dx.
Consider the following assertions:
I. J>14
II. J<π8
Then
Consider the following assertions:
I. J>14
II. J<π8
Then
- Only I is true
- Only II is true
- Both I and II are true
- neither I nor II is true
Q. Let gi:[π8, 3π8]→R, i=1, 2 and f:[π8, 3π8]→R be functions such that g1(x)=1, g2(x)=|4x−π| and f(x)=sin2x, for all x∈[π8, 3π8].
If Si=3π/8∫π/8f(x)⋅gi(x)dx, i=1, 2, then the value of 48S2π2 is
If Si=3π/8∫π/8f(x)⋅gi(x)dx, i=1, 2, then the value of 48S2π2 is
- 2
- 32
- 1
- 12
Q. Let f, g:R→R be two function defined as f(x)=|x|+x and g(x)=|x|−x, for all xϵR. Then find fog, hence find fog(5), fog(−3).
Q. If f(x)=√x+3 and g(x)=x2+1, then f(g(x) =
- √x2+4
- x+4
- x+4
- √x2+3
Q. If y=tan−1⎛⎜
⎜
⎜
⎜⎝log(ex2)log(ex2)⎞⎟
⎟
⎟
⎟⎠+tan−1(3+2logx1−6logx), then d2ydx2 is
- 1
- −1
- 2
- 0
Q. tan2π5−tanπ15−√3tan2π5tanπ15 is equal to
- 1
- 1√3
- −√3
- √3
Q. tanπ11+tan2π11+tan4π11+tan7π11+tan9π11+tan10π11.
Q. If f(x)=4x2−1 and g(x)=8x+7, gof(2)=
- 15
- 23
- 127
- 345
- 2115
Q. If f(x)=∣∣
∣
∣∣1+xn(1−x)n2+xn(2+x)n(2+x)n1(3−x)n13+x∣∣
∣
∣∣,
then the constant term in the expansion is
then the constant term in the expansion is
- (3n−1)(1−2n+1)
- 3n(1−2n+1−2n+1−1)
- (3n−1)(2n+1−1)
- 2n+1(1−3n)+(3n+1)
Q. If f is a differentiable function on R and f′(0)=2 satisfying f(x+y)=f(x)+f(y)1−f(x)f(y) then f(π/8) is equal to
- 1/2
- 1
- 3/2
- tanπ/8
Q. If |x−2|≤1, then
- x∈[1, 3]
- x∈(1, 3)
- x∈[−1, 3)
- x∈(−1, 3)
Q.
Find the value of each of the following:
Q. Let f(x)=|x−2| and g(x)=f(f(x)), x∈[0, 4]. Then ∫30(g(x)−f(x))dx equal to
- 12
- 0
- 1
- 32
Q. If f:R+→R+ is a polynomial function satisfying the functional equation f(f(x))=6x−f(x), then f(17) is equal to
- 51
- 34
- 17
- −51
Q.
If f(x)=√x+3 and g(x)=1+x2, then fog(x)= ____.
x+4
√x2+4
x+3
√x2−4
Q. Let f(x)=sin(π6sin(π2sinx)) for all x∈R and g(x)=π2sinx for all x∈R. Let (f∘g)(x) denote f(g(x)) and (g∘f)(x) denotes g(f(x)). Then which of the following is (are) true?
- Range of f is [−12, 12]
- Range of f∘g is [−12, 12]
- limx→0f(x)g(x)=π6
- There is an x∈R such that (g∘f)(x)=1
Q. Find the composition function (f∘g)(x) and its domain.
f(x)=√(−x+1), g(x)=x2−8
f(x)=√(−x+1), g(x)=x2−8
- [−2, 2]
- [−1, 6]
- [−3, 3]
- [−∞, ∞]
Q. If f(x)=2, g(x)=x2, h(x)=2x, ∀x∈R then find (f(g(h(x))))
Q. f(x)=2x+1; g(x)=x2−1
(f∘g)(x)=
(f∘g)(x)=
- x2+2x
- 2x3+x2−2x−1
- 2x2−1
- 4x2+4x
- 2(x2+x+1)
Q. Find the composition function (f∘g)(x) and its domain.
f(x)=x2+1, g(x)=√2x
f(x)=x2+1, g(x)=√2x
- [1, +∞)
- [0, +∞)
- [−∞, +∞)
- [−1, +∞)
Q. The value of determinant Δ=∣∣
∣∣abca+2xb+2yc+2zxyz∣∣
∣∣ is
- xyz
- abc
- 2xyz+abc
- 0
Q. ddx(sec−1x)= ?