Properties of Cube Root of a Complex Number
Trending Questions
Q. Write cot−1(1√x2−1), x>1 in the simplest form.
Q.
If , find where .
Q. If i=√−1, then 4+5(−12+√32i)334+3(−12+√32i)365 is equal to
- −1+i√3
- i√3
- −i√3
- 1−i√3
Q. sin(tan−1x), |x|<1 is equal to
- x√1+x2
- 1√1+x2
- x√1−x2
- 1√1−x2
Q.
If are the cube roots of unity, is equal to
Q.
If are the cube roots of unity, then factors is
Q.
If is a factor of , then the real root of is:
None of these
Q.
is equal to
Q. If α and β are the roots of the equation x2−4x+1=0 (α>β), then the value of f(α, β)=β32cosec2(12tan−1βα)+α32sec2(12tan−1αβ) is
Q. If the equation secθ+cosec θ=c has two real roots between 0 and 2π, then the least integer which c2 cannot exceed must be
Q.
If , show that .
Q.
If a, b, c belongs to Q then roots of the equation (b+c-2a)x²+(c+a-2b)x+(a+b-2c)=0 are
a)rational b) non real c) irrational d) equal
Q. The sum of 162th power of the roots of the equation x3−2x2+2x−1=0 is
Q. If the four roots of the equation z4+z3+2z2+z+1=0 form a quadrilateral on the Argand plane, then the area of the quadrilateral is
- √3+28
- √3+24
- √3+22
- √3+23
Q.
If , find and so that .
Q.
If , show that .
Q. If w is a complex cube root of unity, show that
Q. The value of sin−135−sin−1817 is:
- cos−16085
- cos−12485
- cos−18485
- cos−11517
Q. If α, β be the roots of the equation u2−2u+2=0 and if cotθ=x+1, then [(x+α)n−(x+β)n][α−β] is equal to
- sinnθsinnθ
- cosnθcosnθ
- sinnθcosnθ
- cosnθsinnθ
Q. The value of (1+cosθ+isinθ)n+(1+cosθ−isinθ)n is
- 2n+1.cosnθ2.cosnθ2
- 2n.cosnθ2.cosθ2
- 2n.cosnθ2.cosnθ2
- 2n+1.cosnθ2.cosθ2
Q. Let z be a complex number satisfying z+z−1=1. A possible value of n when zn+z−n is minimum, is
- 12
- 15
- 10
- 11
Q. Let ω≠1 be a cube root of unity. For distinct non-zero integers a, b, and c, the minimum value of z=|a+bω+cω2|2 is
- 0
- 1
- 3
- 4
Q. Let z1, z2, z3, z4 are distinct complex numbers representing the vertices of a quadrilateral ABCD taken in order. If z1−z3=z2−z4 and arg(z4−z1z2−z1)=π2, then the quadrilateral is
- rhombus
- square
- rectangle
- trapezium
Q. If ∫cosθ5+7sinθ−2cos2θdθ=Aloge|B(θ)|+C, where C is a constant of integration, then B(θ)A can be:
- 5(2sinθ+1)sinθ+3
- 5(sinθ+3)2sinθ+1
- 2sinθ+1sinθ+3
- 2sinθ+15(sinθ+3)
Q. A=[aij]3×3 is a diagonal matrix such that |A|=27000 and x1, x2, x3∈N are elements along principal diagonal, then
- Minimum value of x1+x2+x3 is 60
- Number of such matrix is ′N′ then ′N′ is perfect square
- Number of such matrix is ′N′ then ′N′ is perfect cube
- Minimum value of x1+x2+x3 is 90
Q. If z2+z+1=0 where z is a complex number, then the value of
(z+1z)2+(z2+1z2)2+(z3+1z3)2+......+(z6+1z6)2is
(z+1z)2+(z2+1z2)2+(z3+1z3)2+......+(z6+1z6)2is
- 18
- 54
- 6
- 12
Q. If ∫sec2θsin2θ dθcos3θ=f(θ)+C for some arbitrary constant C, then f(θ) is equal to
- 23ln∣∣ ∣ ∣ ∣ ∣∣⎛⎜ ⎜⎝cosθ+cosπ6cosθ−cosπ6⎞⎟ ⎟⎠tanπ6 esecθ∣∣ ∣ ∣ ∣ ∣∣
- 23ln∣∣ ∣ ∣ ∣ ∣∣⎛⎜ ⎜⎝cosθ−cosπ6cosθ+cosπ6⎞⎟ ⎟⎠tanπ6 ecosθ∣∣ ∣ ∣ ∣ ∣∣
- 23ln∣∣ ∣ ∣ ∣ ∣∣⎛⎜ ⎜⎝cosθ+cosπ6cosθ−cosπ6⎞⎟ ⎟⎠tanπ6 esec(π−θ)∣∣ ∣ ∣ ∣ ∣∣
- 23ln∣∣ ∣ ∣ ∣ ∣∣⎛⎜ ⎜⎝cosθ+cosπ6cosθ−cosπ6⎞⎟ ⎟⎠tanπ6 ecos(π−θ)∣∣ ∣ ∣ ∣ ∣∣
Q. If f(x)=tan−1(cosec (tan−1x)−tan(cot−1x)); x>0, then the value of 8f′(1) is
Q. If α, β are non real numbers satisfying x3−1=0 then the value of ∣∣
∣∣λ+1αβαλ+β1β1λ+α∣∣
∣∣ is equal to
- λ3
- 0
- λ3+1
- λ3−1
Q. If ar=cos2rπ9+isin2rπ9, r=1, 2, 3, ..., i=√−1, then the determinant ∣∣
∣∣a1a2a3a4a5a6a7a8a9∣∣
∣∣ is equal to
- a1a9−a3a7
- a2a6−a4a8
- a9
- a5