Pythagorean Identities
Trending Questions
Q. If the equation sin−1(sink)=k−2π, is possesing a real solution, then
- sum of all possible integral values of k=18
- Number of real roots for k=3
- Number of real roots for k=4
- kmax−kmin=2 ∀ k∈Z
Q. The number of solution(s) of the equation 3tan(x−π12)=tan(x+π12) in A={x∈R:x2−6x≤0} is
- 2
- 3
- 1
- 4
Q. The number of solution(s) of the equation 3tan(x−π12)=tan(x+π12) in A={x∈R:x2−6x≤0} is
- 2
- 3
- 1
- 4
Q. The number of solutions of the equation
cosec−1(sinθ+4sin2θ)+sec−1(−1+6sinθ)=π2, where θ∈[0, 5π] is
cosec−1(sinθ+4sin2θ)+sec−1(−1+6sinθ)=π2, where θ∈[0, 5π] is
- 4
- 9
- 3
- 6
Q. The number of solutions of the equation
cosec−1(sinθ+4sin2θ)+sec−1(−1+6sinθ)=π2, where θ∈[0, 5π] is
cosec−1(sinθ+4sin2θ)+sec−1(−1+6sinθ)=π2, where θ∈[0, 5π] is
- 4
- 9
- 3
- 6
Q. The number of real solution(s) of the equation (sin−1x)3+(cos−1x)3=7(tan−1x+cot−1x)3 is
Q. The number of real solution(s) of the equation (sin−1x)3+(cos−1x)3=7(tan−1x+cot−1x)3 is
Q. The value of sec−1(1410∑k=0sec(7π12+kπ2)sec(7π12+(k+1)π2)) in the interval [−π4, 3π4] equals
Q. The general solution of the equation cosecθ+√2=0 is
- θ=nπ+5π4, n∈I
- θ=nπ−5π4, n∈I
- θ=nπ+(−1)n5π4, n∈I
- none of these.
Q. The number of solutions of the equation
cosec−1(sinθ+4sin2θ)+sec−1(−1+6sinθ)=π2, where θ∈[0, 5π] is
cosec−1(sinθ+4sin2θ)+sec−1(−1+6sinθ)=π2, where θ∈[0, 5π] is
- 4
- 9
- 3
- 6