Range of a Function
Trending Questions
Q. The range of f(x)=cos−1x+2tan−1x+3cosec−1x is
- (−π, 2π)
- [−π, 2π]
- {−π, 2π}
- ϕ
Q. If f(x)=tan−1x−cot−1x,
g(x)=sec−1x−cosec−1x,
h(x)=sin−1x+cos−1x+tan−1x,
i(x)=sin−1x−cos−1x,
j(x)=√x,
then
g(x)=sec−1x−cosec−1x,
h(x)=sin−1x+cos−1x+tan−1x,
i(x)=sin−1x−cos−1x,
j(x)=√x,
then
- Domain of jof(x)+jog(x) is [√2, ∞)
- Domain of jof(x)+joi(x) is [0, 1]
- Domain of joi(x)+joh(x) is
[1√2, 1] - Domain of jog(x)+joh(x) is {1}
Q. The function f(x)=sin−1(x2−2x+2) is defined at x=a and f(a)=b. Then
- a is a positive integer
- a is a negative integer
- b is a rational number
- b is an irrational number
Q. Let f(x)=sinx, g(x)=loge|x|. If the ranges of the composite functions fog and gof are R1 and R2 respectively, then
- R1={μ:−1≤μ<1}
- R2={ϑ:−∞<ϑ<0}
- R1={μ:−1≤μ≤1}
- R2={ϑ:−∞<ϑ≤0}
Q. Let f:[0, 1]→[0, ∞) be a differentiable function with decreasing first derivative in its domain and f(0)=0. If f′(x)>0 for all x∈[0, 1], then
- 1∫0dx(f(x))2+1<tan−1f(1)f′(1)
- 1∫0dx(f(x))2+1<f(1)f′(1)
- 1∫0dx(f(x))2+1>tan−1f(1)f′(1)
- 1∫0dx(f(x))2+1=f(1)f′(1) for some x∈[0, 1]
Q. Iftan(π4+y2)=tan3(π4+x2), thensinx(3+sin2x1+3sin2x)equals
- sin y
- sin 2y
- 0
- cos y
Q. The range of f(x)=cos−1x+2tan−1x+3cosec−1x is
- (−π, 2π)
- [−π, 2π]
- {−π, 2π}
- ϕ
Q. If the function f(x)=ksinx+2cosxsinx+cosx is strictly increasing for all values of x in its domain, then
- k<1
- k>1
- k<2
- k>2
Q.
The principal value of sin−1tan(−5π4) is
- π/4
- - π/4
- - π/2
- π/2
Q. The function f(x)=sin−1(x2−2x+2) is defined at x=a and f(a)=b. Then
- a is a positive integer
- a is a negative integer
- b is a rational number
- b is an irrational number
Q. n∑r=1sin−1(√r−√r−1√r(r+1)) is equal to
- tan−1(√n+1)−π4
- tan−1(√n)
- tan−1(√n)−π4
- tan−1(√n+1)
Q. Let f(x)=(sin−1x)2−(cos−1x)2. If range of f equals [aπ24, bπ24] where a, b∈Z, then the value of b−a is
Q. Let a function f(x)=x∫−π2(2sin2t+3cost)dt is defined in [−π2, π2]. Then which of the following is/are correct
- fmin=π−6
- fmin=0
- fmax=π+6
- fmax=6−π
Q. Let f(x)=√(sin−1x−cos−1x), g(x)=√(tan−1x−cot−1x) and h(x)=√(sec−1x−cosec−1x). Then CORRECT statement(s) is(are)
- Domain of f(x)+g(x) is {1}
- Domain of g(x)+h(x) is [√2, ∞)
- Domain of h(x)+f(x) is [1√2, 1]
- Domain of f(x)+g(x)+h(x) is ϕ
Q.
x3sin(tan−1x4)1+x8
Simplify: