Right Hand Derivative
Trending Questions
Q. If limx→∞(x2+x+1x+1−ax−b)=4, then
- a=1, b=4
- a=1, b=−4
- a=2, b=−3
- a=2, b=3
Q. Let f:R→R be defined as f(x)=⎧⎪
⎪⎨⎪
⎪⎩x3(1−cos2x)2⋅loge(1+2xe−2x(1−xe−x)2), x≠0α, x=0
If f is continuous at x=0, then α is equal to:
If f is continuous at x=0, then α is equal to:
- 0
- 1
- 2
- 3
Q. If the function f(x)={k1(x−π)2−1, x≤πk2cosx, x>π is twice differentiable, then the ordered pair (k1, k2) is equal to:
- (1, 1)
- (1, 0)
- (12, −1)
- (12, 1)
Q. Let f(x)=x6+2x4+x3+2x+3, x∈R. Then the natural number n for which limx→1xnf(1)−f(x)x−1=44 is
Q. If Un=(1+1n2)(1+22n2)2…(1+n2n2)n, then limn→∞(Un)−4n2 is equal to
- 4e2
- 4e
- 16e2
- e216
Q. The value of limn→∞⎡⎢
⎢⎣1√(2n−12)+1√(4n−22)+1√(6n−32)+...+1n⎤⎥
⎥⎦ is equal to
- π2
- π3
- π4
- π6
Q. Let K be the set of all real values of x where the function f(x)=sin|x|−|x|+2(x−π)cos|x| is not differentiable. Then the set K is equal to :
- {0}
- {π}
- ϕ (an empty set)
- {0, π}
Q. If limx→∞(e2x+ex+x)1x=ea, then the value of a is
Q. If f:R→R is given by f(x)=x+1, then the value of limn→∞1n[f(0)+f(5n)+f(10n)+...+f(5(n−1)n)], is:
- 72
- 32
- 52
- 12
Q. Let [.] denote the greatest integer function.
Consider f(x)={2−|x|, −1≤x≤1|x−2|−x, 1<x≤3 and g(x)=⎧⎪⎨⎪⎩sinx−1, 0≤x<π2[x]−cos(x−2), π2≤x≤π.
Which of the following statements is/are CORRECT?
Consider f(x)={2−|x|, −1≤x≤1|x−2|−x, 1<x≤3 and g(x)=⎧⎪⎨⎪⎩sinx−1, 0≤x<π2[x]−cos(x−2), π2≤x≤π.
Which of the following statements is/are CORRECT?
- limx→1+g(f(x))=−1
- limx→π/2−g(f(g(x)))=0
- limx→2+f(g(x))f(x)−2=12
- limx→0+g(f(x))(f(x)−2)2=12
Q. The value of limn→∞(1√n2+1√n2−12+1√n2−22+⋯+1√n2−(n−1)2) is
- π2
- π3
- π6
- π4
Q. limx→∞(a1/x+b1/x+c1/x3)x= (where a, b, c are positive real numbers)
- 0
- (abc)1/3
- (abc)−1/3
- 1
Q. limx→0xa[bx] (a≠0), where [⋅] denotes the greatest integer function, is equal to
- a
- b
- ba
- 1−ba
Q. The value of limx→a(|x|3a−[xa]3), a>0
(where [.] denotes the greatest integer function) is
(where [.] denotes the greatest integer function) is
- a2−3
- a2−1
- a2
- does not exist.
Q. Let f(x)=(27−2x)1/3−39−3(243+5x)1/5, x≠0. If f(x) is continuous at x=0, then the value of f(0) is
- 2/3
- 2
- 4
- 6
Q. Let λ=1∫0dx1+x3 and p=limn→∞⎛⎜
⎜
⎜
⎜
⎜⎝n∏r=1(n3+r3)n3n⎞⎟
⎟
⎟
⎟
⎟⎠1/n. Then the value of lnp is equal to
- ln2−1+3λ
- ln2−3+3λ
- 2ln2+3λ
- ln4−3+3λ
Q. Let limh→0h2f(x+2h)−2f(x+h)+f(x)=x1−x1+x(1+lnx)2. If limx→0+f(x)=1 and f(1)=2, then the value of f(3)f(2) is
Q. Let f(x)=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩x∫0(5+|1−t|)dt, x>25x+1, x≤2⎫⎪
⎪
⎪⎬⎪
⎪
⎪⎭
Which of the following is true for f(x)?
Which of the following is true for f(x)?
- The right hand derivative of f(x) at x=2 doesn’t exist
- f(x) is continuous at x=2
- f(x) is continuous but not differentiable at x=2
- f(x) is everywhere differentiable
Q. Let f(x)=11+e1/x for x≠0 and f(0)=0. Then
- f(0+) does not exist
- f(0−) is equal to zero
- f′(0−) is equal to 1
- f′(0+) is equal to zero
Q. If f(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪⎩sin(a+2)x+sinxx, x<0b , x=0(x+3x2)1/3−x1/3x4/3, x>0 is continuous at x=0, then the value of a+2b is
- 0
- −1
- 2
- −2
Q. limx→0−(5x+2|x|7x+3|x|) is equal to
- 34
- 710
- 0
- ∞
Q. Let f(x)={x+e2x−1, x<0x2+2λx, x≥0. If f(x) is differentiable at x=0, then the value of 2λ is
Q. The value of limn→∞[(n+1)(n+2)...(n+n)]1nn is:
- 4e
- 3e
- 3e2
- 4e2
Q. If limx→0aex−bcosx+ce−xxsinx=2, , then a+b+c is equal to
Q. Let [t] denote the greatest integer ≤t. If for some λ∈R−{0, 1}, limx→0∣∣∣1−x+|x|λ−x+[x]∣∣∣=L, then L is equal to
- 0
- 2
- 12
- 1
Q. The value of limn→∞[1na+1na+1+1na+2+⋯+1nb] where a, b>0 and a≠b is:
- ln(ba)
- ln(ab)
- ln(a2b)
- ln(a+b)
Q. Number of points where f(x)=[x]sin2(πx) is not differentiable if x∈(−7, 10) is (where [.] denotes the greatest integer function)
- 15
- 0
- 6
- 17
Q. Let f(x)=⎧⎪⎨⎪⎩limn→∞ex2−1+[(a+b)x−(a−b)]x2nx2n+1+cosx−1, x∈R−{0}k, x=0
If f(x) is continuous for all x∈R, then the value |k| is
If f(x) is continuous for all x∈R, then the value |k| is
Q. If f(x)=9−2/x2, x≠0 is continuous at x=0, then the value of f(0) is
- 0
- 1
- 9
- −1
Q. If the value of limn→∞((2n+1)!n2n+1)1n=lna+b, then the value of (a−b) equals to (where a, b∈Z)