Standard Limits to Remove Indeterminate Form
Trending Questions
Q.
limx→π2(1−tan(x2))(1−sin x)(1+tan(x2))(π−2x)3is
1/8
0
∞
1/32
Q.
If limx→0kx cosec x = limx→0x cosec kx , then k =
1
-1
Q. limx→−∞{x4sin(1x)+x21+|x|3} is equal to
- does not exist
Q.
If 0 < a < b, then limn→∞(bn+an)1/n is equal to
e
a
b
1
Q. The value of limx→0 limn→∞ (secnx)cosnx is equal to
Q.
limx→01−cos x cos 2x cos 3xsin22x is equal to
7/2
7/3
7/4
7/5
Q. If α is a repeated root of ax2+bx+c=0 then limx→αsin(ax2+bx+c)(x−α)2 is
Q.
limx→0(e1/x−1)(e1/x+1)
0
1
-1
Does not exist
Q.
The value of limx→∞ x[tan−1(x+1x+2)−tan−1(xx+2)]is
1
-1
1/2
-1/2
Q.
limx→0 1−cos2xx
[MMR 1983]
4
0
1
2