Theorems on Integration
Trending Questions
Q.
None of these
Q. ∫xex2log2ex2 dx= ____ +c
- (2e)x2log(2e)
- 2x2ex21+log2
- 2x2ex22(1+log2)
- 2x2log2ex2log2
Q. For each positive integer n, let
yn=1n{(n+1)(n+2)......(n+n)}1n
For x∈R let [x] be the greatest integer less than or equal to x. If limn→∞yn=L, then the value of [L] is
yn=1n{(n+1)(n+2)......(n+n)}1n
For x∈R let [x] be the greatest integer less than or equal to x. If limn→∞yn=L, then the value of [L] is
Q.
If , then at is
Q. Evaluate: ∫x2(x2+a2)(x2+b2)dx
Q.
If logx a, ax2 and logbx are in G.P. then write the value of x.
Q.
Integrate the function.
∫ex(1x−1x2)dx.
Q. If x=cosec(tan−1(cos(cot−1(sec(sin−1a))))) and y=sec(cot−1(sin(tan−1(cosec(cos−1a))))), where a∈[0, 1], then which of the following options is(are) CORRECT?
- x=√2−a2
- x=√3−a2
- y=1√2−a2
- y=√3−a2
Q.
Find the following integrals.
∫x3+5x2−4x2dx.
Q. The value of ∫e6logx−e5logxe4logx−e3logxdx is equal to
- 0
- x33
- 3x3
- 1x
Q.
Find the following integrals.
∫x3−x2+x−1(x−1)dx.
Q. Integrate the function: 5x+3√x2+4x+10
Q. (i) Find the integral: ∫dxx2−16
(ii) Find the integral: ∫dx√2x−x2
(ii) Find the integral: ∫dx√2x−x2
Q. Integrating factor of xdydx−y=x4−3x is
- logx
- x
- 1x
- −x
Q. ∫cos2x−cos2θcosx−cosθdx is equal to
- 2(sinx+xcosθ)+C
- 2(sinx−xcosθ)+C
- 2(sinx−2xcosθ)+C
- 2(sinx+2xcosθ)+C
Q.
Integrate the following functions.
∫1√x2+2x+2dx.
Q. If 3tan−1x+cot−1x=π then x equal to
- 0
- 1
- −1
- 12
Q. The area cut off by the parabola y2=4ax and its latus rectum is
- 8a2
- 4a2
- 8a23
- 4a23
Q. 1)Find the maximum and minimum values, if any, of the function given by
f(x)=(2x−1)2+3
2)Find the maximum and minimum values, if any, of the function given by
f(x)=9x2+12x+2
3)Find the maximum and minimum values, if any, of the function given by
f(x)=−(x−1)2+10
4)Find the maximum and minimum values, if any, of the function given by
f(x)=x3+1
f(x)=(2x−1)2+3
2)Find the maximum and minimum values, if any, of the function given by
f(x)=9x2+12x+2
3)Find the maximum and minimum values, if any, of the function given by
f(x)=−(x−1)2+10
4)Find the maximum and minimum values, if any, of the function given by
f(x)=x3+1
Q.
Evaluate.