Trigonometric Equations
Trending Questions
If , then is equal to
How do you prove ?
- 4
- 6
- 7
- 8
Complete set of values of x satisfying cos2x > |sinx|, x ∈(−π2, π) is
(−π6, 5π6)
(−π6, π)
(−π6, π6)∪(5π6, π)
(π6, π2)∪(5π6, π)
If sin24x+cos2x=2sin4x.cos4x then number of values of x satisfying, if x∈[−2π, 2π] is
0
2
3
4
Find the principal solution or solution of .
- 0
- y
- −y
- none of these
- 228
- 215+2−√3
- 229
- 214+2−√3
( [.] denotes the greatest integer function )
How do you prove ?
General solution of is
In a triangle , if then must satisfy
None of the above
If tan A +cot A =4, then the value of tan4A+cot4A.
If tan α=1−cos βsin β, then
tan 3α=tan 2β
tan 2α=tan β
tan 2β=tan α
none of these
- 1−√66
- 1−2√36
- 1−2√66
- √3−2√26
Least positive integral value of x satisfying
(ex−2)(sinx−cosx)(x−loge2)(cosx−1√2)<0 is
3
5
2
4
- x=π4
- y=−1
- y=1
- x=3π4
Trigometric identities are valid for all real values where as trigonometric equations are valid for only some values.
- 1
- 2
then the value of tan(x2) is
- −tan(α2)cot(β2)
- tan(α2)tan(β2)
- −cot(α2)tan(β2)
- cot(α2)tan(β2)
sin(9x)+sin(3x)=0
in the closed interval [0, 2π] is
- 7
- 13
- 19
- 25
If sin x +cosec x =2, then write the value of sinnx+cosecnx.
If sinA+sinB=α and cosA+cosB=β , then write the value of tan(A+B2)
If sinθ+cosθ=0 and θ lies in the fourth quadrant, find sinθ and cosθ.
- (1+tanα)(1+tan(β2))=2sin(α+γ)
- tanα+tanβ=tanγ
- tan(α+β)=tanγ
- tan2γtanβ=−1
([.] denotes greatest integer function )
- 12
- −12
- 1
- −1
([.] denotes greatest integer function )
- (116, 136)
- (54, 43)
- (136, 116)
- (512, 112)