Trigonometric Functions
Trending Questions
Q.
What is the domain and range of ?
Q.
is equal to:
Q.
If where then at is
Q. If 2cos3B+3cos4A=3 and 2sin3B−3sin4A=0, where 2A and 2B are positive acute angles. If 2A+3B=πJ, then the value of J is
- 1
- 2
- 3
- 4
Q. Write the following functions in the simplest form :
tan−1(√1−cosx1+cosx), 0<x<π.
tan−1(√1−cosx1+cosx), 0<x<π.
Q. The value of cos−1√23−cos−1√6+12√3 is equal to
- π3
- π4
- π2
- π6
Q. The value of 2021π∫−2021π{x2021(1+tan(π3−x))(1+tan(x−π12))}dx is
- π2021
- π2022
- 0
- (2022)22
Q. In a triangle ABC, cosAcosB+sinAsinBsinC=1, then a:b:c is:
- 1:1:√2
- 1:√2:1
- √2:1:1
- √2:√2:1
Q. The equation tan−1x−cot−1x=tan−1(1√3) has
- no solution
- unique solution
- infinite number of solutions
- two solutions
Q. cos(cot–1x) is equal to, where x ≥ 0
cos(cot–1x) का मान है, जहाँ x ≥ 0
cos(cot–1x) का मान है, जहाँ x ≥ 0
- √1+x2
- x
- (1+x2)−−32
- x(1+x2)−−12
Q. Number of value(s) of x satisfying sin–1x + cos–1x + sec–1x + cosec–1x = π is
sin–1x + cos–1x + sec–1x + cosec–1x = π को संतुष्ट करने वाले x के मान/मानों की संख्या है/हैं
sin–1x + cos–1x + sec–1x + cosec–1x = π को संतुष्ट करने वाले x के मान/मानों की संख्या है/हैं
- 1
- 2
- Infinitely many
अपरिमित रूप से अनेक - 0
Q. The maximum value of sin–1x + tan–1x is
sin–1x + tan–1x का अधिकतम मान है
sin–1x + tan–1x का अधिकतम मान है
- π4
- π2
- 3π4
- π
Q. The value of cos[2cos−115+sin−115] is
- 2√65
- −2√65
- 15
- −15
Q. If √2sinα√1+cos2α=17 and √1−cos2β2=1√10, α, β∈(0, π2), then tan(α+2β) is equal to
Q. If α=cos−1(35), β=tan−1(13), where 0<α, β<π2, then α−β is equal to:
- sin−1(95√10)
- cos−1(95√10)
- tan−1(95√10)
- tan−1(914)
Q. If tan α=2 and α∈(π, 3π2) then the value of the expression cosαsin3α+cos3α is equal to ..................
- 59
- 1
- 79
- 57
Q. If cos(α+β) =45 and sin(α−β) =513 tan2α=?
Q. If a=5, b=4 and cos(A−B)=3132, then tanC2=
- √73
- 3√7
- 1√7
- 2√7
Q. The sum of the series tan−113+tan−129+tan−1433+⋯ upto ∞ terms is
- π4
- π2
- π
- 2π3
Q. Differentiate
sinx−xcosxxsinx+cosx
sinx−xcosxxsinx+cosx
Q. The value of the integral ∫x2(x2+1)(x2+4)dx
(where C is integration constant)
(where C is integration constant)
- 13tan−1x+23tan−1(x2)+C
- 13tan−1x+23tan−1(x3)+C
- −13tan−1x+23tan−1(x2)+C
- −13tan−1x+43tan−1(x2)+C
Q. If cos(α+β)=35 and sin(α−β)=413 then tan2α=?
Q. A function f(x) satisfies f(x)=sinx+∫x0f′(t)(2sint−sin2t)dt, then f(x) is
- sinx1−sinx
- tanx1−sinx
- 1−cosxcosx
- x1−sinx
Q. If tan−1(x)+tan−1(√3)=π2 then x is equal to
यदि tan−1(x)+tan−1(√3)=π2, तब x का मान बराबर है
यदि tan−1(x)+tan−1(√3)=π2, तब x का मान बराबर है
- −1√3
- −√3
- 1√3
- 1
Q. Which of the following is incorrect for the function f(x) = sin–1x?
निम्नलिखित में से कौनसा विकल्प फलन f(x) = sin–1x के लिए गलत है?
निम्नलिखित में से कौनसा विकल्प फलन f(x) = sin–1x के लिए गलत है?
- Domain = [−π2, π2]
प्रांत = [−π2, π2] - Range = [–1, 1]
परिसर = [–1, 1] - Domain = [–1, 1]
प्रांत = [–1, 1] - Range = [−π2, π2]
परिसर = [−π2, π2]
Q. sin−1(sin2π3)+cos−1(cos7π6)+tan−1(tan3π4) is equal to:
- 11π12
- 31π12
- −3π4
- 17π12
Q. Let cos(α+β)=45 and sin(α−β)=513 , where 0≤α, β≤π4 , then tan2α is equal to
- 2516
- 5633
- 1912
- 207
Q. The range of f(x) = 1 + cos–1x + (cos–1x)2 + … ∞; x ∈ (cos1, 1] is
f(x) = 1 + cos–1x + (cos–1x)2 + … ∞; x ∈ (cos1, 1] का परिसर है
f(x) = 1 + cos–1x + (cos–1x)2 + … ∞; x ∈ (cos1, 1] का परिसर है
- [1, ∞)
- (1, ∞)
- [1, ∞) – {2}
- (1, ∞) – {2}
Q. If cot−1x+tan−13=π2, then x=
- 13
- 14
- 3
- 4
Q. If sin(40∑r=1cot−1(1+r+r2))=ab, where a and b are co-prime, then a+b
- is a prime number
- has odd number of factors
- is divisible by 5
- None of the above