Trigonometric Ratios Using Right Angled Triangle
Trending Questions
- 52(2+√3)
- 10(√3−1)
- 5(2+√3)
- 5(√3+1)
A tower stands at the center of a circular park.
and are two points on the boundary of the park such that subtends an angle of at the foot of the tower and the angle of elevation of the top of the first tower from or is .
The height of the tower is
The value of satisfying and are
An aeroplane flying at a height of 9000 m vertically above from the ground, passes another aeroplane when the angles of elevation of the two aeroplanes from a point on the ground are 60∘ and 30∘ respectively. Then the vertical distance between the aeroplanes at that instant is
- 1000 m
- 6000 m
- 8000 m
- 3000 m
- 10√3
- 10√2
- 20√3
- 20√2
- 2r2
- r2
- 3r2
- r2+1
Let A0A1A2A3A4A5 be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths of the line segments A0A1, A0A2 and A0A4 is
34
3√3
3
3√32
- hcotqcotq−cotp
- hcotpcotp−cotq
- htanptanp−tanq
- None of these
- 20(√3−1)
- 40(√3−√2)
- 40(√2−1)
- 20√2
- 5√3 feet
- 20√3 feet
- 10√3 feet
- 10√3 feet
prove that 1 + sec 20 = cot 40 cot 30
- 103(3−√3)
- 203(3+√3)
- 203(3−√3)
- 103(3+√3)
- 120∘
- 150∘
- 30∘
- 60∘
- 1
- 12
- 13
- 14
- 2r2
- r2
- 3r2
- r2+1
- 200√3
- 400√3
- 400
- 100
एक से अधिक उत्तर प्रकार के प्रश्न
If tan2α + 2 tanα × tan2β = tan2β + 2 tanβ × tan2α, then which of the following can be true?
यदि tan2α + 2 tanα × tan2β = tan2β + 2 tanβ × tan2α, तब निम्न में से कौनसा विकल्प सही हो सकता है?
- tan2α + 2 tanα × tan2β = 0
- tanα + tanβ = 0
- tan2β + 2 tanβ × tan2α = 1
- tanα = tanβ
asinA2sin(B−C2)+bsinB2sin(C−A2)+csinC2sin(A−B2)=0
In any â–³ABC, the least value of (sin2 A+sin A+1sin A) is
3
9
None of these