Trigonometric Ratios for Sum of Two Angles
Trending Questions
Q.
Is equal to zero
Lies between
Is a negative number
Lies between
Q.
If sinA=12, cosB=√32, where π2 (i) tan(A+B)
(ii) tan(A-B)
Q.
is defined for
None of these
Q. If A+B= C, then write the value of tan A tanB tanC.
Q. The value of ∑13k=11sin(π4+(k−1)π)6)sin(π4+kπ6) is equal to
- 3−√3
- 2(3−√3)
- 2(√3−1)
- 2(2−√3)
Q. If tanA+tanB=a and cotA+ cotB=b, prove that: cot(A+B)= 1a−1b.
Q.
Differentiate the given functions w.r.t. x.
cos x cos 2x cos 3x
Q.
If , then
Q. Prove that:
(i) tan8θ−tan6θ−tan2θ=tan8θtan6θtan2θ
(ii) tan15∘+tan30∘+tan15∘tan30∘=1
(iii) tan36∘+tan9∘+tan36∘tan9∘=1
(iv) tan13θ−tan9θ−tan4θ=tan13θtan9θtan4θ
(i) tan8θ−tan6θ−tan2θ=tan8θtan6θtan2θ
(ii) tan15∘+tan30∘+tan15∘tan30∘=1
(iii) tan36∘+tan9∘+tan36∘tan9∘=1
(iv) tan13θ−tan9θ−tan4θ=tan13θtan9θtan4θ
Q. If tan(A+B) =p and tan(A-B) = q, then write the value of tan2B.
Q. If tan(A+B)=p, tan(A-B)=q, then show that tan2A=p+q1−pq.
Q. Find the value of tan−1(1)+cos−1(−12)+sin−1(−12).
Q.
If αcos23θ+βcos4θ=16cos6θ+9cos2θ is an identity then
α=1, β=18
α =1, β=24
α =3, β=24
α =4, β=2
Q.
Prove that .
Q. If tan70∘=tan20∘+λtan50∘, then λ is equal to
- 1
- 2
- 3
- √3
Q.
Evaluate :
Q. If sin3xcos3x+cos3xsin3x=38, then the value of 16sin4x is
Q. If cos(x−y)cos(x+y)=mn, then write the value of tanx tany.
Q. Prove that:
(i) sin(A+B)+sin(A−B)cos(A+B)+cos(A−B)=tanA
(ii) sin(A−B)cosAcosB+sin(B−C)cosBcosC+sin(C−A)cosCcosA=0
(iii) sin(A−B)sinAsinB+sin(B−C)sinBsinC+sin(C−A)sinCsinA=0
(iv) sin2B=sin2A+sin2(A−B)−2sinAcosBsin(A−B)
(v) cos2+cos2B−2cosAcosBcos(A+B)=sin2(A+B)
(vi) tan(A+B)cot(A−B)=tan2A−tan2B1−tan2Atan2B
(i) sin(A+B)+sin(A−B)cos(A+B)+cos(A−B)=tanA
(ii) sin(A−B)cosAcosB+sin(B−C)cosBcosC+sin(C−A)cosCcosA=0
(iii) sin(A−B)sinAsinB+sin(B−C)sinBsinC+sin(C−A)sinCsinA=0
(iv) sin2B=sin2A+sin2(A−B)−2sinAcosBsin(A−B)
(v) cos2+cos2B−2cosAcosBcos(A+B)=sin2(A+B)
(vi) tan(A+B)cot(A−B)=tan2A−tan2B1−tan2Atan2B
Q. Evaluate the limit:
limx→π41−tanx1−√2sinx
limx→π41−tanx1−√2sinx
Q.
The value of is
Q.
√2+√3+√4+√6 is equal to
- cot712∘
- sin712∘
- sin15∘
- cos15∘
Q.
If α, β are two different vlaues of θ lying between 0 and 2π which satisfy the equations 6 cos \theta + 8 sin\theta= 9, find the value of sin (α+β).
Q. If tan69∘+tan66∘−tan69∘tan66∘=2k, then k=
- -1
- 12
- −12
- none of these
Q. The value of tanπ8 is equal to
- 12
- √2+1
- 1√2+1
- 1−√2
Q. Column IColumn IIa. sin(410∘−A)cos(400∘+A)+cos(410∘−A)sin(400∘+A) p. -1b. cos21∘−cos22∘2sin3∘sin1∘ is equal toq. 1c. sin(−870∘)+cosec(−660∘)+tan(−855∘)+2cot(840∘)+cos(480∘)+sec(900∘)r. 12
Which of the following is the CORRECT combination ?
Which of the following is the CORRECT combination ?
- a→p, b→q, c→r
- a→r, b→q, c→p
- a→q, b→r, c→p
- a→r, b→p, c→q
Q.
−2π5 is the principal value of