Trigonometric Ratios of Common Angles
Trending Questions
Q.
Prove that:
Q.
The most general value of satisfying the equations and is
Q. The value of logtan17∘+logtan37∘+logtan53∘+logtan73∘ is
- 0
- 1
- 2
- 3
Q.
Prove that
Q. The angle of elevation of the top of a vertical tower from a point A, due east of it is 45∘. The angle of elevation of the top of the same tower from a point B, due south of A is 30∘. If the distance between A and B is 54√2 m, then the height of the tower (in metres), is
- 108
- 54√3
- 36√3
- 54
Q.
If in the triangle ABC, then
Q.
Evaluate :
Q.
What is ?
Q. If P=sin300∘⋅tan330∘⋅sec420∘tan135∘⋅sin210∘⋅sec315∘ and Q=sec480∘⋅cosec 570∘⋅tan330∘sin600∘⋅cos660∘⋅cot405∘, then the value of P and Q are respectively
- √2, −163
- √2, 163
- −2, 316
- √2, 316
Q.
Prove that:
(i)cos11∘+sin11∘cos11∘−sin11∘=tan56∘
(ii)cos9∘+sin9∘cos9∘−sin9∘=tan54∘
(iii)cos8∘−sin8∘cos8∘+sin8∘=tan37∘
Q.
The value of is
Q. The numerical value of cosec θ[1−cosθsinθ+sinθ1−cosθ]−2cot2θ is
- 2
- 3
- 0
- 1
Q.
How do you evaluate ?
Q. The value of the expression (1+cos2A)(1−sec2A)cotA(1+tanA)(1−cotA), when A=30∘ is
Q. ABC is a triangular park with AB=AC=100 metres. A vertical tower is sitiuated at the mid-point of BC. If the angle of elevation of the top of the tower at A and B are cot−1(3√2) and cosec−1(2√2) respectively, then the height of the tower (in metres) is :
- 1003√3
- 25
- 20
- 10√5
Q.
are in
AP
GP
HP
None of these
Q. The value of tan70∘−tan20∘tan50∘ is
- 2
- 1
- 0
- ∞
Q. If α=30∘ and β=60∘, then the value of sinα+sec2α+tan(α+15∘)tanβ+cot(β2+15∘)+tanα is
- 726(4√3−3)
- 3(4−√3)
- 12(√3−1)
- √3−2
Q. Prove that cos(π+x)cos(−x)sin(π−x)cos(π2+x)=cot2x
Q. If cos(α−β)=1 and cos(α+β)=12, where α, β∈(−π, π), then the number of ordered pairs (α, β) satisfying both the equations is
- 0
- 1
- 2
- 4
Q. In any triangle ABC, prove the following:
bcosB+ccosC=acos(B−C)
bcosB+ccosC=acos(B−C)
Q. A person standing on the bank of a river observes that the angle of elevation of the top of a tree on the opposite bank is 45∘. When he moves 20 m away from the bank, he finds the angle of elevation to be 30∘. The height of the tree is
- 10(√3+1) m
- 15√3 m
- 20(√3+1) m
- 10(√3−1) m
Q. If sinθ=45 and θ∈[0, 90∘], then the value of tanθ+cotθ is
- 2512
- 2312
- ±2512
- ±2312
Q. The value of logtan17∘+logtan37∘+logtan53∘+logtan73∘ is
- 0
- 1
- 2
- 3
Q. If sinA+cosec A=2, then the value of sin20A+cosec20A is
- 2
- 20
- 220
- 1
Q.
1−sinAcosAcosA(secA−cosecA).sin2A−cos2Asin3A+cos3A=sinA
Q. Prove that tan(π4+x)tan(π4−x)=(1+tanx1−tanx)2
Q. ∫dxcos(x−a)cos(x−b)=
- cosec(a−b) logsin(x−a)sin(x−b)+c
- cosec(a−b) logcos(x−a)cos(x−b)+c
- cosec(a−b) logsin(x−b)sin(x−a)+c
- cosec(a−b) logcos(x−b)cos(x−a)+c
Q. Prove cotAcosAcotA+cosA=cotA−cosAcotAcosA.
Q. In triangle ABC, right angled at B, Find the expressions of cos A , sin C, tan A and cot C.
- AB/AC , BC/AC, BC/AB , AB/BC
- BC/AC , AB/AC, BC/AB , BC/AB
- AB/AC , AB/AC, BC/AB , BC/AB
- BC/AC , BC/AC, AB/BC , BC/AB