Antiderivative
Trending Questions
Q.
What is the formula of integration of ?
Q. Integrate:∫dt6t−1
- 16ln(6t−1)+C
- 112ln(6t−1)+C
- 16ln(12t−1)+C
- 61ln(6t−1)+C
Q. ∫(1x−x2−13)dx is equal to
- ln|x|−x33−13x+c
- x−x23−x23+c
- x22−x33+c
- x−x22−x33+c
Q. Evaluate: ∫(3e3x+e−x)dx
- e3x+e−x+C
- 3e3x+e−x+C
- e3x−e−x+C
- e3x+e−2x+C
Q. Evaluate:
i. ∫(sinx+cosx)dx
ii. ∫(3x2+4)dx
i. ∫(sinx+cosx)dx
ii. ∫(3x2+4)dx
- i.−cosx+sinx+C
ii.x3+4x+C - i.−cosx−sinx+C
ii.x3−2x+C - i.−cosx−sinx+C
ii.x3+2x+C - i.cosx+sinx+C
ii.x3−4x+C
Q. ∫(t√t+√tt2)dt is equal to
- 12√2(√t−1√t)+c
- 2(√t−1√t)+c
- 2√2(√t−1√t)+c
- 12(√t−1√t)+c
Q. Evaluate ∫3−3x+6dx
- ln(−3x+6)
- −ln(−3x+6)
- −ln(−3x+6)3
- ln(−3x+6)3
Q. Evaluate : ∫1sin2xcos2xdx
- (tanx+cotx+C )
- (tanx−cotx+C )
- (tanx+2cotx+C )
- (tanx+3cotx+C )
Q. Evaluate: ∫(cos(x)+x2)dx
- sinx+x32+C
- sinx+x36+C
- sinx+x23+C
- sinx+x33+C
Q.
Evaluate
Q. Find the integral ∫x+1x2+2x−4dx
- ln(x2+2x−4)+C
- 12ln(x2+2x)+C
- 12ln(x2+2x−4)+C
- 12ln(x+1)+C
Q.
Integrate cos (4x+3) w.r.t x
sin(4x+3)4+c
−sin(4x+3)4+c
sin(4x+3)+c
-sin(4x+3)+c
Q. Evaluate ∫cos(−2x+3)dx
- −sin(−2x+3)2+C
- −sec(−2x+3)2+C
- sin(−2x+3)3+C
- sec(−2x+3)3+C
Q.
Find the integral of the given function w.r.t - x
y=e2x+1x2
Q.
Find the integral of the given function w.r.t - x
y=e2x+1x2
2e2x−1x+c
ex2−1x+c
e2x2−1x+c
e2x−1x+c
Q.
Find the integral of the given function w.r.t x
y=sin(8x)+x
Q. Evaluate ∫(x3−ex+cosx)dx
- x44−ex+sinx
- 3x2−ex+sinx
- x44−ex−sinx
- 3x2−ex−sinx
Q. ∫(sec2x+ex+e3x)dx is equals to
- secx+tanx+ex+e3x+C
- tanx+ex+e3x+C
- tanx+ex+e3x3+C
- secx+ex+e3x3+C
Q.
If occurs in , then must be of the form:
Q. Evaluate: ∫sin2xdx
- x2−sin2x4+C
- x2−sin2x2+C
- x2−sin2x3+C
- x4−sin2x4+C
Q. What is the antiderivative of cosx ?
- cos x
- - sin x
- tan x
- sin x
Q. ∫2x(x−x−3)dx is equal to
- 2x33+2x+c
- 2x33−2x+c
- x33−2x+c
- x33+2x+c
Q.
Evaluate: ∫2zdz3√z2+1
32(z2+1)−2/3+c
32(z2+1)2/3+c
32(z)4/3+c
None of these
Q.
Can you use Sin Cos Tan on non right triangles?
Q. ∫(1x−ex−13)dx is equal to
- 1x2+ex−13x+c
- ln|x|−ex−13x+c
- ln|x|+ex−13x+c
- −1x2+ex−13x+c
Q. Evaluate ∫exsinx dx
- −ex(cosx−sinx)
- −ex2(cosx−sinx)
- −ex2(cosx+sinx)
- −ex(cosx+sinx)
Q.
If and , then is equal to:
Q. Change the order of the integration in
∫a0∫y0f(x, y)dxdy
∫a0∫y0f(x, y)dxdy
Q. ∫(t√t+√tt2)dt is equal to
- 2(√t+2√t)
- 2(√t+1√t)+c
- 2(1√t−√t)+c
- 2(√t−1√t)+c