Absolute Value Function
Trending Questions
Q. The minimum value of the expression y=|x−2|+|x+4|+|x−6| is
- 8
- 10
- 14
- 6
Q. Number of value(s) of x satisfying the equation ||2x−7|−3|=12 is
Q. If 2|x+1|2−|x+1|=3, then the sum of all real values of x satisfying the equation is
- 2
- −2
- 12
- −52
Q. The value of x satisfying the equation 15|x−7|+4=10|x−7|+4 is
Q. The number of real solution(s) of ||x−2|−2|−2|x|=|x−3| is
- 1
- 0
- 2
- 3
Q. The minimum value of the expression is y=|x+1|+|x−3| is
- 0
- 1
- 5
- 4
Q. If |x+2||x−4|=3, then the value(s) of x is/are
- 52
- 72
- 7
- 9
Q. If f(x)=|8−4x|, then
- f(x)=8−4x when x≥2
- f(x)=8−4x when x≤2
- f(x)=4x−8 when x>2
- f(x)=4x−8 when x<2
Q. The sum of the solutions of the equation |√x−2|+√x(√x−4)+2=0, (x>0) is equal to:
- 4
- 9
- 10
- 12
Q. The value(s) of x satisfying |x+3|=x2−4x−3 is/are
- −1
- 0
- 3
- 6
Q. If |4x−3|=|x+5|, then x is/are
- 83
- −25
- −83
- 25
Q. Number of real solutions of the equation |||x2−1|−1|+3|=1 is
- 1
- 2
- 3
- 0
Q. If |2x−1|+|2x−2|=6, then x∈
- {−34, 94}
- {94, 6}
- {34, 94}
- {−34, 94, 6}
Q. Given that |t|=3, then a possible value of |2t−1| is
- 4
- 8
- 9
- 7
Q. If x2−5x sgn(x2−4)+6=0, then number of values of x satisfying it is
Q. If p=2 and q=−5, then the distance between p and q along the number line is
- −3
- 3
- −7
- 7
Q. If x2−|x+3|+x=0, then x=
- −√3
- √3
- 3
- 0
Q. If f(x)=|2x3+x−7|, then
- f(x)=2x3+x−7 when 2x3+x−7≥0
- f(x)=2x3+x−7 when 2x3+x−7≤0
- f(x)=7−2x3−x when 2x3+x−7<0
- f(x)=7−2x3−x when 2x3+x−7>0
Q. If b=−43, then the absolute value of 9b is
Q. The minimum possible value of |x−1|+|x−2|+⋯+|x−100| is
- 4900
- 2500
- 2550
- 2450
Q. Number of value(s) of x satisfying the equation −2|x−14|+5=−6|x−15|−1 is
Q. Solution of |x||x+1|=2 is
- {−1, 1}
- {−2, 1}
- {−3, 2}
- {−4, −2}
Q. If ||x−3|−4|=3, then there exist
- exactly 2 distinct values of x in [1, 5]
- exactly 2 distinct values of x in [−5, 0]
- exactly 2 distinct values of x in [1, 10]
- exactly 4 distinct values of x in [−5, 10]
Q. The value(s) of x satisfying the equation ||x−3|−4|=3, is/are
- −4
- 4
- 6
- 10
Q.
If then the value of is
Q. If y=(a−2)x2+(b−3)x, where a, b∈R is a linear function and |a−b|=4, then the possible value(s) of b is/are
- 1
- 2
- −2
- 6
Q. The value(s) of x satisfying the equation ||x−3|−4|=3, is/are
- −4
- 4
- 6
- 10
Q. If |x−7|2−3|x−7|−10=0, then value(s) of x can be equal to
- 2
- 5
- 9
- 12
Q. If a=−7, then the distance of a from zero along the number line is
Q. Number of positive solutions of the equation ||x+1|−3|=5 is