Angle between Two Lines
Trending Questions
If the line cuts the parabola at and , then is equal to [ where, ]
The angle between the lines whos intercepts on the axes are and respectively is
none of these
The equation of bisectors of the angles between the lines are
None of these
- y=(m+tanϕ1−mtanϕ)x
- y=(m−tanϕ1+tanϕ)x
- y=(tanϕ1+mtanϕ)x
- y=(m−tanϕ1+mtanϕ)x
If the line lies on the plane , then
Let PQR be a right angled isosceles triangle right angled at P(2, 1). If the equation of the line QR is 2x+y=3, then the equation representing the pair of lines PQ and PR is
3x2−3y2+8xy+20x+10y+25=0
3x2−3y2+8xy−20x−10y+25=0
3x2−3y2+8xy+10x+15y+20=0
3x2−3y2−8xy−10x−15y−20=0
The equation of the pair of straight lines through origin, each of which makes as angle α with the line y = x, is
x2+2xysec2α+y2=0
x2+2xycosec2α+y2=0
x2−2xycosec2α+y2=0
x2−2xysec2α+y2=0
- x+7y=9
- y+7x=9
- 7x−y=13
- 7y−x=13
The angle between the lines xy = 0 is
45∘
60∘
90∘
180∘
- x+7y=9
- y+7x=9
- 7x−y=13
- 7y−x=13
- x−1=0
- x−y=0
- y−1=0
- x+y=0
- y+√3x+2−3√3=0
- y−√3x+2+3√3=0
- √3y−x+3+2√3=0
- √3y+x−3+2√3=0
- 3x−y−9=0
- 3x+y−15=0
- x−3y+5=0
- x+3y−13=0
- π3
- π2
- π4
- π6
- 0∘
- π4
- π3
- π2
- y+√3x+2−3√3=0
- y−√3x+2+3√3=0
- √3y−x+3+2√3=0
- √3y+x−3+2√3=0
- 3:4
- 4:3
- 2:5
- 5:2
- 3x−y−9=0
- 3x+y−15=0
- x−3y+5=0
- x+3y−13=0
- x+y−2=0
- y=x+1
- y=x
- x+y+2=0
- x−7y+13=0
- y−7x+5=0
- x+7y−15=0
- y+7x−15=0
- 1719
- 1119
- 1723
- 1123
- −2−√22
- −2+√22
- 2−√22
- 2+√22
- √3−22√3−2
- √3+22√3−1
- √3−22√3+1
- √3+22√3+1
- x+7y=9
- y+7x=9
- 7x−y=13
- 7y−x=13
- π3
- π4
- π6
- π2
- y+√3x+2−3√3=0
- y−√3x+2+3√3=0
- √3y−x+3+2√3=0
- √3y+x−3+2√3=0
- −1√2
- √35
- −√35
- 1√2
- y+√3x+2−3√3=0
- y−√3x+2+3√3=0
- √3y−x+3+2√3=0
- √3y+x−3+2√3=0
- 3x−y−9=0
- 3x+y−15=0
- x−3y+5=0
- x+3y−13=0