Argument of a Complex Number
Trending Questions
Q. If |sinx+cosx|=|sinx|+|cosx|, where sinx≠0, cosx≠0, then in which quadrant does x lie?
- Quadrant I
- Quadrant II
- Quadrant III
- Quadrant IV
Q. If z1, z2 are two complex numbers such that |z1|=|z2|=2 and argz1+argz2=0, then z1z2=
Q. Let z, w be complex numbers such that ¯z+i¯w=0 and argzw=π. Then argz equals
- π4
- π2
- 3π4
- 5π4
Q. Let S be the set of all complex numbers z satisfying |z−2+i| ≥√5. If the complex number z0 is such that 1|z0−1| is the maximum of the set {1|z−1|:z∈S}, then the principal argument of 4−z0−¯¯¯¯¯z0z0−¯¯¯¯¯z0+2i is
- −π2
- π4
- π2
- 3π4
Q. Let z1, z2, z3, z4 are distinct complex numbers representing the vertices of a quadrilateral ABCD taken in order. If z1−z3=z2−z4 and arg(z4−z1z2−z1)=π2, then the quadrilateral is
- rectangle
- rhombus
- square
- trapezium
Q. Argument and modulus of 1+i1−i are respectively
[RPET 1984; MP PET 1987; Karnataka CET 2001]
[RPET 1984; MP PET 1987; Karnataka CET 2001]
- −π2 and 1
- π2 and √2
- 0 and √2
- π2 and 1
Q. If complex numbers z1 and z2 both satisfy z+¯z=2|z−1| and arg(z1−z2)=π3, then find the value of Im(z1+z2). (where Im(z) denotes the imaginary part of z)
- sinπ3
- cosec π3
- tanπ3
- cotπ3
Q. If 3+isinθ4−icosθ, θ∈[0, 2π], is a real number, then an argument of sinθ+icosθ is :
- π−tan−1(43)
- −tan−1(34)
- π−tan−1(34)
- tan−1(43)
Q. If complex numbers z1 and z2 both satisfy z+¯¯¯z=2|z−1| and arg(z1−z2)=π3, then the value of Im(z1+z2) is
(Im(z) denotes the imaginary part of z)
(Im(z) denotes the imaginary part of z)
- sinπ3
- cosec π3
- tanπ3
- cotπ3
Q. Let z be a complex number such that z+|z|=3+i. Then which of the following is/are true?
- sin3θ+cos3θ=91125, where θ=argz
- |z|=35
- Re(logz)=log(53)
- z−¯z=−2i
Q. If √5−12i+√−5−12i=z, then principal value of argz can be
- −π4
- π4
- 3π4
- 3π4