Conditional Identities
Trending Questions
Q. If sin4α+4cos4β+2=4√2 sinαcosβ;
α, β∈[0, π], then cos(α+β)−cos(α−β) is equal to :
α, β∈[0, π], then cos(α+β)−cos(α−β) is equal to :
- −1
- √2
- −√2
- 0
Q.
If , then
, for all is an integer.
Q. In triangle ABC, if cotA.cotB=12 and cotB.cotC=118, then the value of tanB is
3
4
5
6
Q.
Explain formula.
Q. If A+B+C=π and cos2A+cos2B+cos2C=a+bcosA.cosB.cosC, then ab is equal to
.
- 1
- -1
- 2
- -2
Q.
In ΔABC, c cos(A−α)+αcos(C+α)=
αcosα
bcosα
ccosα
2bcosα
Q.
In ΔABC, ∠C=2π3, then the value of cos2A+cos2B−cosA.cosB=
12
14
34
√32
Q. If in triangle ABC, tan A + tan B + tan C = 6 and tan A tan B = 2, then the triangle is
- Right angled isosceles
- Aacute angled isosceles
- Aacute angled
- equilateral
Q. In a △ABC, if cosA+cosB+cosC=32, then the triangle is
- an isosceles
- an equilateral
- a scalene
- a right angled
Q. In △ABC, if A, B and C represent the angles of a triangle, then the maximum value of sinA2+sinB2+sinC2 is
- 12
- 1
- 32
- 3
Q. In a ΔABC, if A = π4 and tanBtanC = k
then k must satisfy
then k must satisfy
- k2−6k+1≥0
- k2−6k+1 = 0
- k2−6k+1≤0
- 3−2√2<k
Q.
In ΔABC, ∠C=2π3, then the value of cos2A+cos2B−cosA.cosB=
12
14
34
√32
Q. cos−1(cos(−5))+sin−1(sin(6))−tan−1(tan(12)) is equal to
(The inverse trigonometric functions take the principal values)
(The inverse trigonometric functions take the principal values)
- 4π−11
- 3π+1
- 4π−9
- 3π−11
Q.
If A + B + C = π then tan2A2 + tan2B2 + tan2C2 is always
≤ 1
≥ 1
= 0
= 1
Q. In a △ABC, tanA=12, tanB=k+12 and tanC=2k+12, then the value of [k] is
(where [.] represents greatest integer function)
(where [.] represents greatest integer function)
Q. If A, B, C are angles of a triangle and angle A is obtuse, then the exhaustive set of value of tanBtanC is
- (0, 1)
- (0, 2)
- (0, 0.5)
- any positive real number
Q.
If A+B+C=π then, tanA2⋅tanB2+tanB2⋅tanC2+tanC2⋅tanA2 =
tanA2 . tanB2 . tanC2
tanA2 + tanB2 + tanC2
−tanA2. tanB2 . tanC2
1
Q.
If cos(x−y)cos(x+y)+cos(7t)cos(7−t)=0 then tan x tan y tan 7 tan t=
1
-1
2
-2
Q. If A, B, C are the three angles in a triangle such that 2sinB sin(A+B)−cos A=1 and 2sinC sin(B+C)−cosB=0, then
- A=120∘
- B=120∘
- C=30∘
- B=C
Q.
Let I (n)=2cos n x, nϵN, then I(1)I(n+1)-I(n)=___
I(n+4)
I(n+2)
I(n+3)
I(1)
Q. If A + B + C = 90∘ then cot A+cot B+cot Ccot A cot B cot C
- 1
- -1
- \N
- 2
Q. If A, B, C are the angles of triangle such that 0<A≤π3, then the range of tanB+tanCtanBtanC−1 is
- (−√3, 0)
- (0, √3]
- (0, √3)
- [0, √3]
Q. If A+B+C=π, then find the value of
cosAsinBsinC+cosBsinAsinC+cosCsinBsinA is
cosAsinBsinC+cosBsinAsinC+cosCsinBsinA is
0
1
2
4
Q. If A, B, C be the angles of a triangle, then ∑cot A+cot Btan A+tan B=
- 1
- 2
- -1
- -2
Q. In triangle ABC, sinA+sinB+sinCsinA+sinB−sinC is equal to
- tanA2cotB2
- cotA2tanB2
- cotA2cotB2
- tanA2tanB2
Q. If in △ABC, ∠A=π4 and tanBtanC=p, then the possible set of value(s) of p is/are
- (−∞, 0)
- ((√2+1)2, ∞)
- [(√2+1)2, ∞)
- (−∞, 0]