Conditions on the Parameters of Logarithm Function
Trending Questions
Q. All the pairs (x, y) that satisfy the inequality 2√sin2x−2sinx+5⋅14sin2y≤1 also satisfy the equation :
- 2sinx=siny
- sinx=2siny
- sinx=|siny|
- 2|sinx|=3siny
Q. For a>0 and a≠1, the roots of the equation logaxa+logxa2+loga2xa3=0 are
- a−4/3
- a−3/4
- a
- a−1/2
Q. If the equation 2x+4y=2y+4x is solved for y in terms of x, where x<0, then the sum of the solutions is
- xlog2(1−2x)
- x+log2(1−2x)
- log2(1−2x)
- x+log2(1+2x)
Q. The complete set of values of x which satisfies the inequation log(1.5)(2x−8x−2)>0 is
- x∈(2, 6)
- x∈(−∞, 2)∪(6, ∞)
- x∈(6, ∞)
- x∈(−∞, 2)∪(4, ∞)
Q. Number of integral solutions of the equation
log0.5x(x2)−14log16x(x3)+40log4x√x=0 is
log0.5x(x2)−14log16x(x3)+40log4x√x=0 is
- 2
- 3
- 1
- 0
Q. If log3(2x+6) is defined, then the complete set of values of x is
- (−3, ∞)
- (6, ∞)
- (3, ∞)
- (−6, ∞)
Q. For the given inequality find the value of x ?
Q. If logx−7(x−4) is defined, then
- x∈(8, ∞)
- x∈(4, 7)
- x∈(4, ∞)−{8}
- x∈(7, ∞)−{8}
Q. The number of real values of the parameter k for which (log16x)2−log16x+log16k=0 with real coefficients will have exactly one solution is
- 2
- 1
- 4
- None of these
Q.
Solution set of the inequality log7x−2x−3<0 is
(−∞, 2)
(2, ∞)
(−∞, 3)
(3, ∞)
Q. The real values of x satisfying log0.5(x+1x+2)≤1
- (−∞, −2)∪[0, ∞)
- (−∞, −2]∪[0, ∞)
- (−∞, −2)∪(−1, ∞)
- R−[−2, −1]
Q. For y=logax to be defined 'a' must be
- Any positive real number
- Any number
- ≥e
- Any positive real number ≠1
Q. The number of real values of x, satisfying 32log3x−2x−3=0 is
- 0
- 1
- 2
- more than 2
Q. The domain of the function √(log0.5 x) is
- (1, ∞)
- (0, ∞)
- (0, 1]
- (0.5, 1)