Conjugate of a Complex Number
Trending Questions
Q. If z is a complex number such that z2=(¯¯¯z)2, then
- Re(z)=Im(z)
- Re(z)Im(z)=1
- Re(z)Im(z)=0
- None of these
Q. If z is a complex number satisfying z+3¯¯¯z=5−6i, then the value of Im(¯¯¯z) is
- −3
- 3
- 14
- 54
Q. Let z = x+iy be a complex number where x and y are integers. Then, the area of the rectangle whose vertices are the roots of the equation z¯z3+¯zz3=350, is
- 48
- 32
- 40
- 80
Q. Paragraph for below question
नीचे दिए गए प्रश्न के लिए अनुच्छेद
Roots of x2 + 6x + 12 = 0 are α and β, where α and β are complex numbers, then
समीकरण x2 + 6x + 12 = 0 के मूल α व β हैं, जहाँ α व β सम्मिश्र संख्याएं हैं, तब
Q. |α2 – β2| is
प्रश्न - |α2 – β2| का मान है
नीचे दिए गए प्रश्न के लिए अनुच्छेद
Roots of x2 + 6x + 12 = 0 are α and β, where α and β are complex numbers, then
समीकरण x2 + 6x + 12 = 0 के मूल α व β हैं, जहाँ α व β सम्मिश्र संख्याएं हैं, तब
Q. |α2 – β2| is
प्रश्न - |α2 – β2| का मान है
- 8√3
- 6√3
- 12√3
- −12√3
Q. Let z is a complex number and ¯¯¯z is conjugate of z. If (1+i)z=(1−i)¯¯¯z, then the value of z+i¯¯¯z is
- 1
- −1
- 0
- −i
Q. If a is a complex number such that |a|=1 and az2+z+1=0 has one purely imaginary root, then cos(arg(a)) is
- √2−12
- √3+12
- √5−12
- √7−12
Q. If a+ibc+id=x+iy, then a2+b2c2+d2 is equal to
- x2−y2
- x2+y2
- (x+y)2
- (x−y)2
Q. If z is a complex number satisfying z−12=i(9−2¯¯¯z), then the value of z+¯¯¯z is
- 10
- 4
- 6
- 8
Q. If z=x+iy, |z|=1 and ω=(1−z)21−z2, then the locus of ω is equivalent to
- |z−2|=|z+2|
- |z−2i|=|z+2i|
- |z−1−i|=|z+1−i|
- |z−i|=|z+i|
Q. This section contains 1 Matrix Match type question, which has 2 Columns (Column I and Column II). Column I has four entries (A), (B), (C) and (D), Column II has four entries (P), (Q), (R) and (S). Match the entries in Column I with the entries in Column II. Each entry in Column I may match with one or more entries in Column II.
इस खण्ड में 1 मैट्रिक्स मिलान प्रकार का प्रश्न है, जिसमें 2 कॉलम (कॉलम I तथा कॉलम II) हैं। कॉलम I में चार प्रविष्टियाँ (A), (B), (C) तथा (D) हैं, कॉलम II में चार प्रविष्टियाँ (P), (Q), (R) तथा (S) हैं। कॉलम I में दी गयी प्रविष्टियों का मिलान कॉलम II में दी गयी प्रविष्टियों के साथ कीजिए। कॉलम I में दी गयी प्रत्येक प्रविष्टि का मिलान कॉलम II में दी गयी एक या अधिक प्रविष्टियों के साथ हो सकता है।
Match the items given in Column-I with those of Column-II.
कॉलम-I में दिये गये पदों का मिलान कॉलम-II के पदों के साथ कीजिए।
इस खण्ड में 1 मैट्रिक्स मिलान प्रकार का प्रश्न है, जिसमें 2 कॉलम (कॉलम I तथा कॉलम II) हैं। कॉलम I में चार प्रविष्टियाँ (A), (B), (C) तथा (D) हैं, कॉलम II में चार प्रविष्टियाँ (P), (Q), (R) तथा (S) हैं। कॉलम I में दी गयी प्रविष्टियों का मिलान कॉलम II में दी गयी प्रविष्टियों के साथ कीजिए। कॉलम I में दी गयी प्रत्येक प्रविष्टि का मिलान कॉलम II में दी गयी एक या अधिक प्रविष्टियों के साथ हो सकता है।
Match the items given in Column-I with those of Column-II.
कॉलम-I में दिये गये पदों का मिलान कॉलम-II के पदों के साथ कीजिए।
Column(कॉलम)-I | Column(कॉलम)-II | ||
(A) | If x+1x=2, then x2+1x2= यदि x+1x=2, तब x2+1x2= |
(P) | Zero(शून्य) |
(B) | Number of real roots of (x – 1)2 + (x – 2)2 + (x – 3)2 = 0 is (x – 1)2 + (x – 2)2 + (x – 3)2 = 0 के वास्तविक मूलों की संख्या है |
(Q) | 1 |
(C) | If (2+1)(22+1)(24+1)(28+1)28−1=4n+1, then n is यदि (2+1)(22+1)(24+1)(28+1)28−1=4n+1, तब n का मान है |
(R) | 2 |
(D) | If 32log3x−2x−3=0, then the number of values of x satisfying this equation is यदि 32log3x−2x−3=0, तब इस समीकरण को संतुष्ट करने वाले x के मानों की संख्या है |
(S) | 4 |
- A-PR, B-P, C-RS, D-PQ
- A-PR, B-P, C-S, D-PQ
- A-R, B-P, C-S, D-Q
- A-PR, B-PQ, C-S, D-Q
Q. If z is a complex number satisfying z+3¯¯¯z=5−6i, then the value of Im(¯¯¯z) is
- −3
- 3
- 14
- 54
Q. If z=x+iy, |z|=1 and ω=(1−z)21−z2, then the locus of ω is equivalent to
- |z−2|=|z+2|
- |z−2i|=|z+2i|
- |z−1−i|=|z+1−i|
- |z−i|=|z+i|
Q. This section contains 1 Matrix Match type question, which has 2 Columns (Column I and Column II). Column I has four entries (A), (B), (C) and (D), Column II has four entries (P), (Q), (R) and (S). Match the entries in Column I with the entries in Column II. Each entry in Column I may match with one or more entries in Column II.
इस खण्ड में 1 मैट्रिक्स मिलान प्रकार का प्रश्न है, जिसमें 2 कॉलम (कॉलम I तथा कॉलम II) हैं। कॉलम I में चार प्रविष्टियाँ (A), (B), (C) तथा (D) हैं, कॉलम II में चार प्रविष्टियाँ (P), (Q), (R) तथा (S) हैं। कॉलम I में दी गयी प्रविष्टियों का मिलान कॉलम II में दी गयी प्रविष्टियों के साथ कीजिए। कॉलम I में दी गयी प्रत्येक प्रविष्टि का मिलान कॉलम II में दी गयी एक या अधिक प्रविष्टियों के साथ हो सकता है।
Match the complex numbers given in Column-I with the principal values of their respective arguments given in Column-II.
कॉलम-I में दी गयी सम्मिश्र संख्याओं का मिलान कॉलम-II में दिये गये इनके संगत कोणांकों के मुख्य मानों के साथ कीजिए।
इस खण्ड में 1 मैट्रिक्स मिलान प्रकार का प्रश्न है, जिसमें 2 कॉलम (कॉलम I तथा कॉलम II) हैं। कॉलम I में चार प्रविष्टियाँ (A), (B), (C) तथा (D) हैं, कॉलम II में चार प्रविष्टियाँ (P), (Q), (R) तथा (S) हैं। कॉलम I में दी गयी प्रविष्टियों का मिलान कॉलम II में दी गयी प्रविष्टियों के साथ कीजिए। कॉलम I में दी गयी प्रत्येक प्रविष्टि का मिलान कॉलम II में दी गयी एक या अधिक प्रविष्टियों के साथ हो सकता है।
Match the complex numbers given in Column-I with the principal values of their respective arguments given in Column-II.
कॉलम-I में दी गयी सम्मिश्र संख्याओं का मिलान कॉलम-II में दिये गये इनके संगत कोणांकों के मुख्य मानों के साथ कीजिए।
Column (कॉलम)-I |
Column (कॉलम)-II |
||
(A) | z=1+i√2 | (P) | −π4 |
(B) | z=−1+i√3 | (Q) | π4 |
(C) | z=1−i√5 | (R) | −3π4 |
(D) | z=−1−i√7 | (S) | 3π4 |
- A-PQRS, B-PQS, C-PQ, D-RS
- A-PQR, B-PS, C-P, D-PR
- A-PQ, B-S, C-P, D-PR
- A-Q, B-S, C-P, D-R
Q.
If z = 3+5i, then z3 + ¯z + 198 =
-3-5i
-3+5i
3+5i
3-5i
Q.
Let (x, y, z) be points with integer coordinates satisfying the system of homogeneous equations:
3x−y−z=0−3x+z=0−3x+2y+z=0
Then the number of such points for which
x2+y2+z2≤100 is
Q.
If z is a complex number ¯¯¯¯¯¯¯¯z−1(¯z) = , then
1
-1
0
None of these
Q.
If z = 3+5i, then z3 + ¯z + 198 =
-3-5i
-3+5i
3+5i
3-5i
Q.
If z is a complex number ¯¯¯¯¯¯¯¯z−1(¯z) = , then
1
-1
0
None of these
Q. If (a+i)22a−i=p+iq, where a∈R, then the value of p2+q2 is
- (a2−1)24a2+1
- (a2+1)24a2+1
- (a2−1)22a2+1
- (a2+1)22a2+1
Q. If (x−iy)(3+5i) is the conjugate of (−6−24i), where x, y∈R, then the value of x−y is