Continuity of a Function
Trending Questions
Q.
The differential coefficient of is
Q. Consider the real-valued function f satisfying 2f(sinx)+f(cosx)=x. Then,
- Domain of f is R
- Domain of f is [−1, 1]
- Range of f is [−2π3, π3]
- Range of f is R
Q. If Sn=132+1+142+2+152+3+⋯⋯upto n terms and S∞=a72, then a equals
Q. If n∑k=1f(k)=n2(n+2), then the value of 10∑k=11f(k) is equal to
- 480
- 560
- 550
- 570
Q. The function f(x)−p[x+1]+q[x−1], where is the greatest integer function is continuous at x =1, if
- p−q=0
- p+q=0
- p=0
- q=0
Q. Let f(x)=[x3−3], where [.] denotes the greatest integer function. Then the number of points in the interval (1, 2) where the function is discontinuous, is
- 2
- 4
- 6
- 3
Q. Let f:R→R be a continuous function satisfying f(0)=1 and f(2x)−f(x)=x, for all x∈R. Then f(2020) equals
Q. If f(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪⎩sin(p+1)x+sinxx, x<0 q, x=0√x+x2−√xx3/2, x>0 is continuous at x=0, then the ordered pair (p, q) is equal to:
- (−32, 12)
- (52, 12)
- (−12, 32)
- (−32, −12)
Q. Paragraph for below question
नीचे दिए गए प्रश्न के लिए अनुच्छेद
Consider the function f(x)=⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩tanxsinx, x<0a, x=0bloge(1+2x)x, x>0
फलन f(x)=⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩tanxsinx, x<0a, x=0bloge(1+2x)x, x>0 पर विचार कीजिए।
Q. If f(x) is continuous at x = 0, then the value of b is equal to
प्रश्न - यदि x = 0 पर f(x) सतत है, तब b का मान बराबर है
नीचे दिए गए प्रश्न के लिए अनुच्छेद
Consider the function f(x)=⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩tanxsinx, x<0a, x=0bloge(1+2x)x, x>0
फलन f(x)=⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩tanxsinx, x<0a, x=0bloge(1+2x)x, x>0 पर विचार कीजिए।
Q. If f(x) is continuous at x = 0, then the value of b is equal to
प्रश्न - यदि x = 0 पर f(x) सतत है, तब b का मान बराबर है
- 1
- 2
- –1
- 12
Q. More than One Answer Type
एक से अधिक उत्तर प्रकार के प्रश्न
Which of the following functions is/are continuous for x ∈ R?
x ∈ R के लिए निम्नलिखित में से कौनसा/कौनसे फलन सतत है/हैं?
एक से अधिक उत्तर प्रकार के प्रश्न
Which of the following functions is/are continuous for x ∈ R?
x ∈ R के लिए निम्नलिखित में से कौनसा/कौनसे फलन सतत है/हैं?
- f(x)=tan−1x
- f(x) = {x}; {·} represents fractional part of x.
f(x) = {x}; {·}, x के भिन्नात्मक भाग फलन को दर्शाता है - f(x) = |x + 4|
- f(x) = sgn(ex); sgn is signum function
f(x) = sgn(ex); sgn सिग्नम फलन है
Q. The value of a for which the function f(x)=asinx+13sin3x has an extremum at x=π3 is
Q. If f(x) = {8x−4x−2x+1x2, x>0exsinx+πx+λ, x⩽0 is continuous at x = 0, then the value of λ is
यदि f(x) = {8x−4x−2x+1x2, x>0exsinx+πx+λ, x⩽0, x = 0 पर सतत है, तब λ का मान है
यदि f(x) = {8x−4x−2x+1x2, x>0exsinx+πx+λ, x⩽0, x = 0 पर सतत है, तब λ का मान है
- (loge4)2
- –loge2
- 2(loge2)2
- 4loge2
Q. The function
f(x) = {1−cos3xx2, ifx≠0K, ifx=0
is continuous at x = 0 for
कौनसे विकल्प के लिए फलन
पर सतत है?
f(x) = {1−cos3xx2, ifx≠0K, ifx=0
is continuous at x = 0 for
कौनसे विकल्प के लिए फलन
पर सतत है?
- K = 9
- K = 92
- K = 18
- No value of K
K का कोई मान नहीं
Q. The number of integral values of k for which h(x)=sgn(x2−2kx+sgn(k+2)) is continuous for all x∈R is
[Note : sgn(y) denotes the signum function of y.]
[Note : sgn(y) denotes the signum function of y.]
- 0
- 1
- 2
- 3
Q. If the function f(x)=(1+|sinx|)a|sinx|, −π6<x<0b, x=0etan2xtan3x, 0<x<π6, is continuous at x = 0, then
- a=logeb, a=23
- b=logea, a=23
- a=logeb, b=2
- None of these
Q.
The function f(x) defined as f(x) = √(x−4)2
continuous but not differentiable ∀ x ϵ R
continuous and differentiable ∀ x ϵ R
not continuous at x = 4
continuous only for x≥4
Q.
If f(x) be a continuous function defined for 1≤x≤3. f(x) ϵ Q ∀ x ϵ [1, 3] and f(2)=10 (Where Q is a set of all rational numbers). Then, f(1.8) is
1
5
10
20
Q. This section contains 1 Assertion-Reason type question, which has 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
इस खण्ड में 1 कथन-कारण प्रकार का प्रश्न है, जिसमें 4 विकल्प (a), (b), (c) तथा (d) दिये गये हैं, जिनमें से केवल एक सही है।
A : A function f(x)={sinx+tanx2x;x≠0k;x=0 is discontinuous at x = 0 if k = 1.
A : एक फलन f(x)={sinx+tanx2x;x≠0k;x=0, x = 0 पर असतत है, यदि k = 1 है।
R : If a function is continuous at x = a then limx→af(x)=f(a).
R : यदि एक फलन, x = a पर सतत है, तब limx→af(x)=f(a) है।
इस खण्ड में 1 कथन-कारण प्रकार का प्रश्न है, जिसमें 4 विकल्प (a), (b), (c) तथा (d) दिये गये हैं, जिनमें से केवल एक सही है।
A : A function f(x)={sinx+tanx2x;x≠0k;x=0 is discontinuous at x = 0 if k = 1.
A : एक फलन f(x)={sinx+tanx2x;x≠0k;x=0, x = 0 पर असतत है, यदि k = 1 है।
R : If a function is continuous at x = a then limx→af(x)=f(a).
R : यदि एक फलन, x = a पर सतत है, तब limx→af(x)=f(a) है।
- Both (A) and (R) are true and (R) is the correct explanation of (A)
(A) तथा (R) दोनों सही हैं तथा (R), (A) का सही स्पष्टीकरण है - Both (A) and (R) are true but (R) is not the correct explanation of (A)
(A) तथा (R) दोनों सही हैं लेकिन (R), (A) का सही स्पष्टीकरण नहीं है - (A) is true but (R) is false
(A) सही है लेकिन (R) गलत है - (A) is false but (R) is true
(A) गलत है लेकिन (R) सही है
Q. Let S1, S2, S3 and S4 be four sets defined as
S1={x:x∈Z and log2|4−3x|≤2}
S2={x:x∈Z and ∣∣∣1−|x|1+|x|∣∣∣≥13}
S3={x:x2−3x+2 sgn(x)=0}, where sgn(x) represents the signum function.
S4={(x, y):x, y∈Z, x2+y2≤4}.
List I has four entries and List II has five entries. Each entry of List I is to be correctly matched with a unique entry of List II.
List IList II (A)n(S1ΔS2)(P)9(B)n((S1×S2)∩(S2×S1))(Q)12(C)n(S1∩S2∩S′3)(R)36(D)n(S4×S3)(S)2(T)0
Which of the following is the only CORRECT combination?
S1={x:x∈Z and log2|4−3x|≤2}
S2={x:x∈Z and ∣∣∣1−|x|1+|x|∣∣∣≥13}
S3={x:x2−3x+2 sgn(x)=0}, where sgn(x) represents the signum function.
S4={(x, y):x, y∈Z, x2+y2≤4}.
List I has four entries and List II has five entries. Each entry of List I is to be correctly matched with a unique entry of List II.
List IList II (A)n(S1ΔS2)(P)9(B)n((S1×S2)∩(S2×S1))(Q)12(C)n(S1∩S2∩S′3)(R)36(D)n(S4×S3)(S)2(T)0
Which of the following is the only CORRECT combination?
- (C)→(S)
- (C)→(Q)
- (D)→(R)
- (D)→(Q)
Q.
Form six expressions using and . Use not more than one number operation and every expression must have in it.
Q. If the function f(x) is continuous at x=0, where f(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪⎩sin((a+1)x)+sinxx ;x<0c ;x=0(x+bx2)1/2−x1/2bx3/2 ;x>0,
then the possible values of a, b, c can be
then the possible values of a, b, c can be
- a=−12
- b=−32
- b=1
- c=12
Q. The function f(x)=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩x2/a, 0≤x<1a, 1≤x<√22b2−4bx2, √2≤x<∞
is continuous for 0≤x<∞, then the most suitable values of a and b are
is continuous for 0≤x<∞, then the most suitable values of a and b are
- a=1, b=−1
- a=−1, b=1+√2
- a=−1, b=1
- None of the above
Q. If f(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩sin(α+2)x+sinxx , x<0b , x=0(x+3x2)13−x13x43 , x>0 is continuous at x=0 then a+2b is equal to :
- −2
- 1
- 0
- −1
Q. If the function f(x)=(1+|sinx|)a|sinx|, −π6<x<0b, x=0etan2xtan3x, 0<x<π6, is continuous at x = 0, then
- a=logeb, a=23
- b=logea, a=23
- a=logeb, b=2
- None of these
Q. Let f(x)=cos−1(1−{x}2)sin−1(1−{x}){x}−{x}3, x≠0, where {x} denotes fractional part of x. Then
(correct answer + 1, wrong answer - 0.25)
(correct answer + 1, wrong answer - 0.25)
- If f(0)=π4, then f(x) is continuous at x=0
- If f(0)=π√2, then f(x) is continuous at x=0
- If f(0)=π2√2, then f(x) is continuous at x=0
- f(x) is a discontinuous function.
Q. The function f(x)−p[x+1]+q[x−1], where is the greatest integer function is continuous at x =1, if
- p−q=0
- p+q=0
- p=0
- q=0
Q. The value of p for which the function f(x)=(4x−1)3sin(xp)ln(1+x23), x≠0=12(ln4)3, x=0 may be continuous at x = 0 is
- 1
- 2
- 3
- 4
Q. If f(x)=x2−1, determine which of the following statement(s) is (are) true on the following interval [0, π].
- tan(f(x)) and 1/f(x) are both continuous
- tan(f(x)) and 1/f(x) are both discontinuous
- tan(f(x)) and f−1(x) are both continuous
- tan(f(x)) is continuous but 1/f(x) is not.
Q. Let f(x)=xsinπx, x>0. Then for all natural numbers n, f′(x) vanishes at
- a unique point in the interval (n, n+12)
- a unique point in the interval (n+12, n+1)
- a unique point in the interval (n, n+1)
- two points in the interval (n, n+1)
Q. If f(x)={x sin x, when 0<x≤π2π2sin(π+x), when π2<x<π, then
- f(x) is discontinous at x=π2
- f(x) is continuous at x=π2
- f(x) is continuous at x = 0
- None of these