Derivative of Some Standard Functions
Trending Questions
Q.
If , and then the value of is
None of these
Q.
Describe Inverse Trigonometric Functions
Q.
has third continuous derivative and , then is
None of these
Q. Suppose f(x)=x−12x2−7x+5 for x≠1 and f(1)=−13, then
- f is continuous but not differentiable at x=1
- f is differentiable x=1 and f′(1)=−13
- f is differentiable x=1 and f′(1)=−29
- f is discontinuous at x=52
Q. Δ1=∣∣
∣∣xbbaxbaax∣∣
∣∣ and Δ2=∣∣∣xbax∣∣∣ are the given determinants, then
- Δ1=3(Δ2)2
- ddx(Δ1)=3Δ2
- ddx(Δ1)=3(Δ2)2
- Δ1=3(Δ2)3/2
Q. If f(x−y), f(x)f(y) and f(x+y) are in A.P. for all x, y∈R and f(0)≠0, then
- f(4)=f(−4)
- f(2)+f(−2)=0
- f′(4)+f′(−4)=0
- f′(2)=f′(−2)
Q.
How do you find the derivative of ?
Q.
ddx(1x√x)=
−32x−3/2
−32x−5/2
x−5/2
None of the above
Q. If y(α)=√2(tan α+cot α1+tan2α)+1sin2α where α∈(3π4, π), then dydα at α=5π6 is
- −14
- 43
- 4
- −4
Q.
ddx(1x√x)=
−32x−3/2
−32x−5/2
x−5/2
None of the above
Q. Match the following
FunctionsDerivatives(a)sin x1)−sin x(b)cos x2)sec2x(c)tan x3)cos x(d)sec x4)−cosec2x(e)cot x5)sec x tan x(f)cosec x6)−cosecx cot x
FunctionsDerivatives(a)sin x1)−sin x(b)cos x2)sec2x(c)tan x3)cos x(d)sec x4)−cosec2x(e)cot x5)sec x tan x(f)cosec x6)−cosecx cot x
- a – 1, b – 3, c – 2, d – 4, e – 5, f – 6
- a – 3, b – 1, c – 2, d – 5, e – 4, f – 6
- a – 2, b – 1, c – 3, d – 5, e – 4, f – 6
- None of the above