Derivative of Standard Inverse Trigonometric Functions
Trending Questions
Q.
If , then
Q.
If , then
Q.
The normal to the curve at is:
None of these
Q. If for x∈(0, 14), the derivative of tan−1(6x√x1−9x3) is √x⋅g(x), then g(x) equals:
- 91+9x3
- 3x√x1−9x3
- 3x1−9x3
- 31+9x3
Q. If limx→a[sin−12x1+x2] doesn't exist, then the number of possible value(s) of a is
(Here, [.] denotes the greatest integer function)
(Here, [.] denotes the greatest integer function)
Q. If y=x∑r=1tan−1(11+r+r2), then dydx at x=2 is equal to
- 15
- 110
- 0
- 12
Q. If for x∈(0, 14), the derivative of tan−1(6x√x1−9x3) is √x⋅g(x), then g(x) equals:
- 91+9x3
- 3x√x1−9x3
- 3x1−9x3
- 31+9x3
Q. Match the following functions to their derivatives?
FunctionDerivativesa) sin−1x1) −1|x|√x2−1b) cos−1x2) −11+x2c) tan−1x3) 1|x|√x2−1d) sec−1x4) 11+x2e) cot−1x5) −1√1−x2f) cosec−1x6) 1√1−x2
FunctionDerivativesa) sin−1x1) −1|x|√x2−1b) cos−1x2) −11+x2c) tan−1x3) 1|x|√x2−1d) sec−1x4) 11+x2e) cot−1x5) −1√1−x2f) cosec−1x6) 1√1−x2
- a-6, b-5, c-4, d-3, e-2, f-1
- a-5, b-6, c-4, d-3, e-2, f-1
- a-6, b-5, c-3, d-4, e-2, f-1
- a-6, b-5, c-3, d-2, e-1, f-2