Differentiation Using Substitution
Trending Questions
Q. If y=sin−1√(1+x)+√(1−x)2, then dydx=
- 1√(1−x2)
- −1√(1−x2)
- −12√(1−x2)
- None of these
Q. Let y=(cot−1x)(cot−1(−x)) and range of y∈(0, aπ2b], then the value of a+b is
- 4
- 2
- 6
- 5
Q. If cos−1(x2−y2x2+y2)=log a then dydx is equal to
- yx
- xy
- x2y2
- y2x2
Q. If √(1−x2n)+√(1−y2n)=a(xn−yn), then √(1−x2n1−y2n)dydx is equal to
- xn−1yn−1
- yn−1xn−1
- xy
- 1
Q. The derivative of f(x) defined by f(x)=tan−1(√1−cos x1+cos x), −π<x<π
is
is
- 1, if 0<x<π
- −1, if −π<x<0
- 12, if 0<x<π
- −12, if −π<x<0
Q. If y=√(1+cos 2 θ1−cos2 θ), dydθ at θ=3π4 is
- −2
- 2
- ±2
- None of these
Q. The differentiation of tan−1(√1+x2−1x) w.r.t. tan−1x is
- 1
- 12
- 34
- −12
Q.
If √1−x2n+√1−y2n=a(xn−yn) then √1−x2n1−y2n.dydx=
1
xy
xn−1yn−1
yx
Q. If y=tan−1√1+x2−1x, then
- y′(1)=1
- y′(1)=14
- y′(1)=0
- y′(1) does not exist.