Differentiation under Integral Sign
Trending Questions
Q. If x=∫y0 dt√1+9t2 and d2ydx2= ay, then the value of a is equal to
Q. This section contains 1 Assertion-Reason type question, which has 4 choices (a), (b), (c) and (d) out of which ONLY ONE is correct.
इस खण्ड में 1 कथन-कारण प्रकार का प्रश्न है, जिसमें 4 विकल्प (a), (b), (c) तथा (d) दिये गये हैं, जिनमें से केवल एक सही है।
A : f(x)=cosxthen−1≤f(x)≤1⇒−1≤f′(x)≤1.
A : f(x)=cosx तब −1≤f(x)≤1⇒−1≤f′(x)≤1
R : If f(x)∈[a, b]⇒f′(x)∈[a, b].
R : यदि f(x)∈[a, b]⇒f′(x)∈[a, b].
इस खण्ड में 1 कथन-कारण प्रकार का प्रश्न है, जिसमें 4 विकल्प (a), (b), (c) तथा (d) दिये गये हैं, जिनमें से केवल एक सही है।
A : f(x)=cosxthen−1≤f(x)≤1⇒−1≤f′(x)≤1.
A : f(x)=cosx तब −1≤f(x)≤1⇒−1≤f′(x)≤1
R : If f(x)∈[a, b]⇒f′(x)∈[a, b].
R : यदि f(x)∈[a, b]⇒f′(x)∈[a, b].
- Both (A) and (R) are true and (R) is the correct explanation of (A)
(A) तथा (R) दोनों सही हैं तथा (R), (A) का सही स्पष्टीकरण है - Both (A) and (R) are true but (R) is not the correct explanation of (A)
(A) तथा (R) दोनों सही हैं लेकिन (R), (A) का सही स्पष्टीकरण नहीं है - (A) is true but (R) is false
(A) सही है लेकिन (R) गलत है - (A) is false but (R) is true
(A) गलत है लेकिन (R) सही है
Q. Let f:R→(0, ∞) be a real valued differentiable function satisfying x∫0tf(x−t) dt=e2x−1. Then which of the following is/are correct?
- (f−1)′(4)=18
- Derivative of f(x) w.r.t. ex at x=0 is equal to 8.
- limx→0f(x)−4x=4
- f(0)=4
Q. Let f:R→R be a differentiable function having f(2)=6, f′(2)=(148). Then limx→2∫f(x)64t3x−2dt equals
- 18
- 12
- 36
- 24
Q. If f is a continuous function then, ∫2a0f(x)dx=∫a0f(x)dx+∫2a0f(2a−x)dx.
- True
- False
Q. Let f(x) be a non-negative continuous function such that the area bounded by the curve y=f(x), x-axis and the ordinates x=π4 and x=β>π4 is βsinβ+π4cosβ+√2β. Then f′(π2) is
- (π2−√2−1)
- (π4+√2−1)
- −π2
- (1−π4−√2)
Q. Let f:R→R and g:R→R be two bijective functions such that they are the mirror images of each other about the line y=a. If h:R→R given by h(x)=f(x)+g(x), then h(x) is
- an onto but not a one-one function
- a one-one and an onto function
- a one-one but not an onto function
- Neither a one-one nor an onto function
Q. Let f:(0, ∞)→(0, ∞) be a differentiable function satisfying, xx∫0(1−t)f(t) dt=x∫0tf(t) dt, x∈R+ and f(1)=1, the value of f(x)=1xme(1−1/x), then m=
Q. List IList II (A)If limn→∞(n2+1n+1−an)−b=0, thenthe value of b is(P)0(B)If x2y+y3=2 and the value of d2ydx2 at x=1 is −m8, then the value of m is(Q)1(C)If f(x)={x, x≤1x2+bx+c, x>1 and f′(x)exists for all x∈R, then the value of c is(R)2(D)If f(x)=x∫0tsin1t dt, then the number ofpoint(s) of discontinuity of f(x) in (0, π) is(S)−1(T)4(U)3
Which of the following is the only CORRECT combination?
Which of the following is the only CORRECT combination?
- (A)→(Q)
- (B)→(U)
- (C)→(S)
- (D)→(T)
Q. Match the elements from Column-I to Column-II.
Column-IColumn-II(A)Let f(x) be a continuous function, where f(1)=3(P)1and F(x) is defined as F(x)=x∫0⎛⎜⎝t2⋅t∫1f(u) du⎞⎟⎠dt.Then the value of F′′(1) is (B)fa, fb and fc denote the lengths of the interior angle(Q)10bisector in a triangle of side lengths a, b, c and area T.If fa⋅fb⋅fcabc=λT(a+b+c)(a+b)(b+c)(c+a), then the valueof λ is(C)Let an be the nth term of an A.P. Let Sn be the sum(R)3of the first n terms of the A.P. where a1=1 and a3=3a8.If Sn is maximum, then the value of n is (D)If x=tan−1(t) is substituted in the differential(S)4equation d2ydx2+xydydx+sec2x=0, it becomes (1+t2)d2ydt2+(2t+ytan−1(t))dydt=k. Thenthe value of k is(T)−1
Which of the following is correct combination?
Column-IColumn-II(A)Let f(x) be a continuous function, where f(1)=3(P)1and F(x) is defined as F(x)=x∫0⎛⎜⎝t2⋅t∫1f(u) du⎞⎟⎠dt.Then the value of F′′(1) is (B)fa, fb and fc denote the lengths of the interior angle(Q)10bisector in a triangle of side lengths a, b, c and area T.If fa⋅fb⋅fcabc=λT(a+b+c)(a+b)(b+c)(c+a), then the valueof λ is(C)Let an be the nth term of an A.P. Let Sn be the sum(R)3of the first n terms of the A.P. where a1=1 and a3=3a8.If Sn is maximum, then the value of n is (D)If x=tan−1(t) is substituted in the differential(S)4equation d2ydx2+xydydx+sec2x=0, it becomes (1+t2)d2ydt2+(2t+ytan−1(t))dydt=k. Thenthe value of k is(T)−1
Which of the following is correct combination?
- (C)→(Q), (D)→(T)
- (C)→(Q), (D)→(P)
- (C)→(R), (D)→(Q)
- (C)→(S), (D)→(T)
Q. If x∫0f(t) dt=x2+1∫xt2f(t) dt, then f′(12) is:
- 1825
- 45
- 2425
- 625
Q. List IList II (A)If limn→∞(n2+1n+1−an)−b=0, thenthe value of b is(P)0(B)If x2y+y3=2 and the value of d2ydx2 at x=1 is −m8, then the value of m is(Q)1(C)If f(x)={x, x≤1x2+bx+c, x>1 and f′(x)exists for all x∈R, then the value of c is(R)2(D)If f(x)=x∫0tsin1t dt, then the number ofpoint(s) of discontinuity of f(x) in (0, π) is(S)−1(T)4(U)3
Which of the following is the only INCORRECT combination?
Which of the following is the only INCORRECT combination?
- (A)→(S)
- (B)→(U)
- (C)→(Q)
- (D)→(R)
Q. If f:R→R+ is a function defined as [f(x)]2=x∫0[{f(t)}2+{f′(t)}2]dt+100, then f(ln2)=