Equations Reducible to Standard Forms
Trending Questions
Q. The solution lof dydx−x tan(y−x)=1
- c eex22=sin(y−x)
- c eex22=sin(y+x)
- c eex22=sin(y−x)2
- c eex22=cos(y−x)
Q. The general solution of the differential equation (y2+e2x)dy−y3dx=0 (C being the constant of integration), is
- y2e−2x+2lny=c
- y2e−2x−2lny=c
- y2e−2x−12y lny=c
- y2e−2x−12lny=c
Q. The general solution of the differential equation (y2+e2x)dy−y3dx=0 (C being the constant of integration), is
- y2e−2x+2lny=c
- y2e−2x−2lny=c
- y2e−2x−12y lny=c
- y2e−2x−12lny=c
Q. The solution lof dydx−x tan(y−x)=1
- c eex22=sin(y−x)
- c eex22=sin(y+x)
- c eex22=sin(y−x)2
- c eex22=cos(y−x)
Q.
Let f(x) is a continuous function which takes positive values for x (x>0), and satisfy ∫x0f(t)dt=x√f(x) with f(1)=12. Then the value of f(√2+1) equals
- 1
- √2−1
- 14
- 1√2−1
Q. The slope of the tangent at (x, y) to a curve passing through (1, π4) is given by yx−cos2(yx), then the equation of the curve is
- y=tan−1[log(ex)]
- y=x tan−1[log(xe)]
- y=x tan−1[log(ex)]
- None of these
Q. A solution of y=2x(dydx)+x2(dydx)4 is
- y=2c12x14+c
- y=2√cx2+c2
- y=2√c(x+1)
- y=2√cx+c2
Q. Is dydx=x+y+12x+2y+3 reducible to variable separable form?
- False
- True
Q. The slope of the tangent at (x, y) to a curve passing through (1, π4) is given by yx−cos2(yx), then the equation of the curve is
- y=tan−1[log(ex)]
- y=x tan−1[log(xe)]
- y=x tan−1[log(ex)]
- None of these
Q. The solution of dydx+1=ex+y is
- e−(x+y)+x+c=0
- e−(x+y)−x+c=0
- ex+y+x+c=0
- ex+y−x+c=0
Q. A solution of the differential equation (dydx)2−xdydx+y=0 is
- y =2
- y =2x
- y =2x -4
- y=2x2−4
Q. The solution of dydx=x+y+12x+2y+3 is .
- 23(x+y)+19log(2x+2y+4|=x+c
- 23(x+y)+19log(3x+3y+4|=x+c
- 23(x+y)+19log(3x+3y|=x+c
- 19log(3x+3y+4|=x+c