Euler's Representation
Trending Questions
Q.
What is the Derivative of ?
Q.
If then the value of is given by :
Q. The domain and range of the function cosec−1√log(3−4secx1−2secx)2 are respectively
- R ; (−π2, π2)
- R+ ; (0, π2)
- (2nπ−π2, 2nπ+π2)−{2nπ}, n∈Z ; (−π2, π2)−{0}
- (2nπ−π2, 2nπ+π2)−{2nπ}, n∈Z ; (0, π2)
Q. If z=eiπ13 then 11−z is equal to (i=√−1)
- 1−z2+z4−z6+z8−z10+z12
- 1+z2+z4+z6+z8+z10+z12
- z−z3+z5−z7+z3−z11
- z+z3+z5+z7+z5+z11
Q. Let z=(√32+i2)5+(√32−i2)5.
If R(z) and I(z) respectively denote the real and imaginary parts of z, then :
If R(z) and I(z) respectively denote the real and imaginary parts of z, then :
- R(z)>0 and I(z)>0
- R(z)<0 and I(z)>0
- R(z)=−3
- I(z)=0
Q. Find the value of tan12[sin−12x1+x2+cos−11−y21+y2]
|x|<1, y>0 and xy<1
|x|<1, y>0 and xy<1
- π+x+y1−xy
- 1−xyx+y
- x+y1−xy
- π+1−xyx+y
Q. The value of 13∑k=11sin(π4+(k−1)π6)sin(π4+kπ6) is equal to
- 3−√3
- 2(3−√3)
- 2(√3−1)
- 2(2+√3)
Q. If z=eiπ13 then 11−z is equal to (i=√−1)
- 1−z2+z4−z6+z8−z10+z12
- 1+z2+z4+z6+z8+z10+z12
- z−z3+z5−z7+z3−z11
- z+z3+z5+z7+z5+z11
Q. If 2tan−1x=sin−12x1+x2, then:
- x∈R
- −1≤x≤1
- x≤−1
- x≥1
Q.
If |u|<1, |v|<1, and z=u−v1+¯uv, then least value of |z| is
|u|−|v|1+|u||v|
|u|+|v|1+|u||v|
||u|−|v||1−|u||v|
None of these
Q. If cosA+cosB=cosC, sinA+sinB=sinC
then the value of expression sin(A+B)sin2C is
then the value of expression sin(A+B)sin2C is
Q.
If z=reiθ, then |eiz|=
ersinθ
e−rsinθ
e−rcosθ
ercosθ
Q. If r∏p=1eipθ=1 where ∏ denotes the continued product, then the most general value of θ is
- 2nπr(r−1), n∈Z
- 2nπr(r+1)n∈Z
- 4nπr(r−1), n∈Z
- 4nπr(r+1), n∈Z
Q. If a=cis2α, b=cis2β, then cos(α−β) is
where cisθ=cosθ+isinθ
where cisθ=cosθ+isinθ
- a+b2√ab
- a−b√ab
- a−b4√ab
- ab2√a−b
Q. If z=reiθ, then find the value of |eiz|
- eiθ
- e−isin θ
- e−rsin θ
- e−rcos θ
Q. If |z1+z2|=|z1−z2| then argz1−argz2=
- (2n+1)π2, n∈Z
- nπ+π4, n∈Z
- 2nπ, n∈Z
- (2n+1)π, n∈Z
Q. If √1−c2=nc−1 for all permissible values of c and n, where z=eiθ, then c2n(1+nz)(1+nz) is equal to
- 1−ccosθ
- 1+2ccosθ
- 1+ccosθ
- 1−2ccosθ
Q. Let z=cosθ+i sinθ. The value of ∑15m=1Im(z2m−1) at θ=2∘
- 1sin2∘
- 13sin2∘
- 12sin2∘
- 14sin2∘
Q. The value of cos(12cos−1[cos(−14π5)])
- sin(−π5)
- cos(2π5)
- −cos(3π5)
- cos(9π5)
Q. The value of ∑6k=1(sin2kπ7−i cos2kπ7) is
- -1
- \N
- -i
- i
Q.
If |u|<1, |v|<1, and z=u−v1+¯uv, then least value of |z| is
|u|−|v|1+|u||v|
|u|+|v|1+|u||v|
||u|−|v||1−|u||v|
None of these
Q. If tanθ−i, where θ∈(−π2, π2)
can be written as reiβ, then (r, β) is
can be written as reiβ, then (r, β) is
- (secθ, θ−π2)
- (secθ, θ+π2)
- (cosec θ, θ−π2)
- (cosec θ, π2−θ)