First Derivative Test for Local Minimum
Trending Questions
Q. Let g(x)=2f(x2)+f(2−x) and f′′(x)<0, ∀ x∈(0, 2). Then which of the following is (are) TRUE?
- g(x) is decreasing in (0, 43)
- g(x) is decreasing in (43, 2)
- g(110)<g(1110)
- g(x) has a local minimum at x=43
Q.
Match the entries of col. I with those of col. II.
Column−IColumn−II(a)f(x)=1−x+x21+x−x2 on [0, 1](p)Greatest value of f=1(b)f(x)=2tanx−tan2x on [0, π2](q)Least value of f=35(c)f(x)=2π(sin2x−x) on [−π2, π2](r)Least value of f=−1(d)f(x)=12, (x3−3x2+6x−2) on (−1, 1)(s)Least value of f=−6
(a)→(p), (b)→(q), (c)→(r), (d)→(s)
(a)→(p, q), (b)→(p), (c)→(p, r), (d)→(p, s)
(a)→(q), (b)→(p), (c)→(p), (d)→(s)
(a)→(s), (b)→(q), (c)→(p, r), (d)→(r, s)