First Fundamental Theorem of Calculus
Trending Questions
Q. ∫π60 (2+3x2)cos 3x dx=
- 136(π+16)
- 136(π−16)
- 136(π2−16)
- 136(π2+16)
Q. Let f(x) be a function satisfying f ’(x) = f(x) with f(0) = 1 and g(x) be a function that satisfies f(x) + g(x) = x2. Then, the value of the integral ∫10f(x)g(x)dx, is
- e−e22−52
- e+e22−32
- e−e22−32
- e+e22+52
Q. ∫10e2Inxdx=
- 0
- 12
- 13
- 14
Q. If g(x) = ∫x0 cos 4 tdt, then g(x +π ) equals
- g(x)
- g(x).g(π)
- g(x)g(π)
- None of these
Q. ∫√33√23 dx√4−9x2dx is
- π6
- π12
- π24
- π36
Q. ∫2π0√1+sinx2dx=
- \N
- 2
- 8
- 4
Q. The value of the definite integral π∫0πtanxsecx+tanxdx is equal to
- π(1−π)
- π(π−2)
- π(2−π)
- π(π−1)
Q. If f(y) =ey, g(y) = y ; y > 0 and F(t) = ∫t0 f(t−y) g(y) dy, then
- F(t)=et−(1+t)
- F(t)=t et
- F(t)=t e−t
- F(t)=1−e−t(1+t)
Q. Fundamental period of the function f(x)=(1+sinx)(1+secx)(1+cosx)(1+cosec x), x∈R−{(2n+1)π, (4m−1)π2, n, m∈Z} is
- π
- 2π
- π2
- 1
Q. ∫π2π4 ex (log sin x+cot x)dx=
- eπ4log 2
- −eπ4log 2
- 12eπ4 log 2
- −12eπ4 log 2
Q. The value of ∫π0sin(n+12)xsin(x2)dx is
- π2
- 0
- π
- 2π
Q. If ∫10ex2(x−α)dx=0, then
- 1<α<2
- α<0
- 0<α<1
- α=0
Q. ∫e1exx(1+x log x)dx=
- ee
- ee−e
- ee+e
- None of these
Q. If l(m, n)=∫10tm(1+t)ndt, then the expression for l(m, n) in terms of l(m+1, n−1) is
- 2nm+1−nm+1l(m+1, n−1)
- nm+1l(m+1, n−1)
- 2nm+1+nm+1l(m+1, n−1)
- mm+1l(m+1, n−1)
Q. The maximum value of the function
f(x)=1∫0t sin(x+πt)dt, x∈R is
f(x)=1∫0t sin(x+πt)dt, x∈R is
- 1π√π2+4
- 1π2√π2+4
- √π2+4
- 12π2√π2+4
Q. ∫10 cos−1xdx=
- \N
- 1
- 2
- None of these
Q. ∫∞0 (a−x−b−x)dx=
- 1log a−1log b
- log a−log b
- log a+log b
- 1log a+1log b
Q. ∫π80sec2 2x2dx=
- 14
- 13
- 12
- None of these
Q. ∫balog xxdx=
- log(log blog a)
- log(ab)log(ba)
- 12log(ab)log(ba)
- 12log(ab)log(ab)
Q. The value of integral ∫e61[log x3]dx, where [.] denotes the greatest integer function, is
- 0
- e6−e3
- e6+e3
- e3−e6
Q. ∫1−1{(x+2x−2)2+(x−2x+2)2−2}12dx=
- 8 log 43
- 8 log 34
- 4 log 43
- 4 log 34
Q. If f(x) is a function satisfying f′(x)=f(x) with f(0)=1 and g(x) be another function such that f(x)+g(x)=x2, then the value of 1∫0f(x)g(x)dx is
- 14(e−e2−1)
- 14(e−2)
- 12(e2−e−3)
- 12(2e−e2−3)
Q. Fundamental period of f(x)=sin4x+cos4x is
- 2π
- 3π2
- π2
- π
Q. ∫π40tan2 x dx=
- 1−π4
- 1+π4
- π4−1
- π4
Q.
∫a1x.a−[logax]dx=e−12, where a>1and [.] denotes the greatest integer function, then the value of a2is
e−1
e
e+1
e2−1
Q. ∫π80sec2 2x2dx=
- 14
- 13
- 12
- None of these
Q. ∫21ex(1x−1x2)dx=
- e22+e
- e−e22
- e22−e
- None of these