General Solution of sin theta = sin alpha
Trending Questions
Q.
The positive integer value of satisfying the equation is
Q. The number of values of x for which sin2x+cos4x=2 is
- \N
- 1
- 2
- infinite
Q. The general solution of the trigonometric equation sin x+ cos x =1 is given by
- x=2nπ;n=0, ±1, ±2....
- x=2nπ+π2;n=0, ±1, ±2, .....
- x=nπ+(−1)nπ4−π4n=0, ±1, π2, ....
- None of these
Q. If sin2θcos2θ=−14, then the values of θ which satisfy the equation is
- θ=nπ8+(−1)n(−π48), n∈Z
- θ=nπ4+(−1)n(−π24), n∈Z
- θ=nπ2+(−1)n(−π24), n∈Z
- θ=nπ4+(−1)n(−π12), n∈Z
Q. How may values of θϵ[0, 2π] satisfies the equation 2cosθ+secθ=5tanθ.
___
Q. The general solution of the equation sinθ=sinα is given by θ=nπ+(−1)n α, n∈Z.
- True
- False
Q. The general solution of the equation2 cos2θ+3 sin θ=0 is
.
- nπ+(−1)nπ6, n∈Z
- nπ+(−1)n+1π6, n∈Z
- nπ+(−1)n5π6, n∈Z
Q. The general solution of the equation2 cos2θ+3 sin θ=0 is
.
- nπ+(−1)nπ6, n∈Z
- nπ+(−1)n+1π6, n∈Z
- nπ+(−1)n5π6, n∈Z
Q. Complete the set of values of x in (0, π) satisfying the inequation 1+log2sinx+log2sin3x≥0 is
- [0, π6]
- [π2, 3π4]
- [π6, π4]∪[3π4, 5π6]
- [5π6, π]
Q.
Set of values of x in (0, π) satisfying 1 +log2sinx +log2sin3x≥0 is
x∈(π2, 2π3)
x∈[0, π3]∪[2π3, π]
x∈(π3, 2π3)
x∈[π6, π4]∪[3π4, 5π6]
Q. The general values of θ satisfying the equation 2sin2θ−3sinθ−2=0 is (n∈Z)
- nπ+(−1)nπ6
- nπ+(−1)nπ2
- nπ+(−1)n5π6
- nπ+(−1)n7π6
Q.
The number of solutions of the pair of equations 2 sin2θ - cos2θ = 0 and 2 sin2θ - 3 sin θ = 0, in the interval [0, 2π] is
Zero
One
Two
Four
Q. The general values of θ satisfying the equation 2sin2θ−3sinθ−2=0 is (n∈Z)
- nπ+(−1)nπ6
- nπ+(−1)nπ2
- nπ+(−1)n5π6
- nπ+(−1)n7π6
Q.
The number of solutions of the pair of equations 2 sin2θ - cos2θ = 0 and 2 sin2θ - 3 sin θ = 0, in the interval [0, 2π] is
Zero
One
Two
Four
Q. ___
The positive integer value of n>3 satisfying the equation
1sin(πn)=1sin(2πn)+1sin(3πn) is