Geometrical Representation of Argument and Modulus
Trending Questions
Q. If z=−3+4i and zw=−14+2i, then
- argw=π4
- argw=−π4
- |w|=2√2
- |w|=4
Q. If z is a complex number such that |3z−2|+|3z+2|=4, then the locus of z is
- a line
- a circle
- a point
- a line segment
Q. If z be a complex number satisfying |Re(z)|+|Im(z)|=4, then |z| cannot be:
- √7
- √172
- √10
- √8
Q. If ∣∣∣z1z2∣∣∣=1 and arg(z1z2)=0, then
- z1=z2
- |z2|2=z1z2
- z1z2=1
- z1=2z2
Q. For a complex number z, if |z−1+i|+|z+i|=1, then the range of the principle argument of z is
( Here, principle argument ∈(−π, π] )
( Here, principle argument ∈(−π, π] )
- [−π4, π4]
- [π4, π2]
- [−π2, −π4]
- [−π2, π2]
Q. Polar form of z=(1+7i)(2−i)2 is
- √2(cos3π4+isin3π4)
- 2(cos3π4+isin3π4)
- √2(cosπ4+isinπ4)
- 2(cosπ4+isinπ4)
Q. The number of complex numbers z that satisfies both the equation |z−1−i|=√2 and |z+1+i|=2, is
- 1
- 2
- 4
- infinite
Q. If z and ω are two complex numbers such that |zω|=1 and arg(z)−arg(ω)=3π2, then arg(1−2¯¯¯zω1+3¯¯¯zω) is
(Here arg(z) denotes the principal argument of complex number z )
(Here arg(z) denotes the principal argument of complex number z )
- 3π4
- π4
- −π4
- −3π4