Higher Order Derivatives
Trending Questions
Q. If f:R→R, f(x2+x+3)+2f(x2−3x+5)=6x2−10x+17 ∀x∈R
then which among the following options are correct
then which among the following options are correct
- f(x) is an odd function
- f(x) is invertible function.
- f(x)=0 has a root in (0, 2)
- f′(x) is an even function
Q. If y=tan−1(loge(e/x2)loge(ex2))+tan−1(3+2logex1−6logex), then d2ydx2 is
- 2
- 1
- \N
- -1
Q. If y2=p(x) is a polynomial of degree 3, then 2ddx [y3d2ydx2] is equal to
- p"' (x) + p' x
- p''(x). p"'(x)
- p (x). p"' (x)
- None of these
Q. If y=acos (lnx)+bsin (lnx), then x2d2ydx2+xdydx is equal to
- \N
- y
- −y
- none of these
Q.
d2xdy2 equals:
−(d2ydx2)−1(dydx)−3
(d2ydx2)(dydx)−2
−(d2ydx2)(dydx)−3
(d2ydx2)−1
Q. If f(x)=(ax2+b)3, b∈R, a∈R−{0} and g(x) is a function such that f(g(x))=g(f(x))=x, then g(x)=
(Given that f and g are bijective functions)
(Given that f and g are bijective functions)
- √x1/3+ba
- √x3−ba
- √x1/3−ba
- √x3+ba
Q. If √(x+y)+√(y−x)=a, then d2ydx2 equals
- 2a
- −2a2
- 2a2
- None of these
Q. If y=sinx, then d3ydx3 at x=π2 will be _____
- \N
- 1
- -1
- None of the above
Q. Let f:R→R be a function such that f(x)=x3+x2f′(1)+xf′′(2)+f′′′(3), x∈R. Then f(2) equals :
- −4
- 30
- 8
- −2
Q. If y=ln(xa+bx)x, then x3d2ydx2 is equal to
- (dydx+x)2
- (dydx−y)2
- (xdydx+y)2
- (xdydx−y)2
Q. Answer the following by appropriately matching the lists based on the information in Column I and Column II
Column IColumn IIa.y=f(x) is given by x=t5−5t3−20t+7 and y=4t3−3t2−18t+3. Then −5×dydx at t=1p. 0b. Let P(x) be a polynomial of degree 4, with P(2)=−1, P′(2)=0, P′′(2)=2, P′′′(2)=−12 and Piv(2)=24, then P′′(3) is q. −2c.y=1x, then dy√1+y4dx√1+x4r. 2d.f(2x+3y5)=2f(x)+3f(y)5 and f′(0)=p and f(0)=q. Then , f′′(0) is s. −1
Column IColumn IIa.y=f(x) is given by x=t5−5t3−20t+7 and y=4t3−3t2−18t+3. Then −5×dydx at t=1p. 0b. Let P(x) be a polynomial of degree 4, with P(2)=−1, P′(2)=0, P′′(2)=2, P′′′(2)=−12 and Piv(2)=24, then P′′(3) is q. −2c.y=1x, then dy√1+y4dx√1+x4r. 2d.f(2x+3y5)=2f(x)+3f(y)5 and f′(0)=p and f(0)=q. Then , f′′(0) is s. −1
- a→p, b→r, c→s, d→q
- a→q, b→r, c→s, d→p
- a→q, b→s, c→r, d→p
- a→q, b→r, c→p, d→s
Q. If y=f(x), then d2ydx2=(f′(x))2.
- True
- False
Q. If y=sin (sinx), then d2ydx2+tanxdydx+y cos2x will be equal to
- 1
- -1
- 2
- \N
Q.
If , complete the following statement
Q. If y=x5(cos(lnx)+sin(lnx)), then the value of (a+b) in the relation x2y2+axy1+by=0 is
(y1 and y2 denote the first and second derivative of y with respect to x, respectively.)
(y1 and y2 denote the first and second derivative of y with respect to x, respectively.)
Q. If f(x)=(1+x)n, then the value of f(0)+f′(0)+f′′(0)2!+⋯+fn(0)n! is
- n
- 2n
- 2n−1
- None of these.
Q. If ey+xy=e, the ordered pair (dydx, d2ydx2) at x=0 is equal to :
- (−1e, 1e2)
- (1e, −1e2)
- (1e, 1e2)
- (−1e, −1e2)
Q. Ify=sin−1x1−x2, then the value of (1−x2)d2ydx2−3xdydx−y=
Q.
d2xdy2 equals:
−(d2ydx2)−1(dydx)−3
(d2ydx2)(dydx)−2
−(d2ydx2)(dydx)−3
(d2ydx2)−1
Q. Let f:R→R be a function such that f(x)=x3+x2f′(1)+xf′′(2)+f′′′(3), x∈R. Then f(2) equals :
- −4
- 30
- 8
- −2
Q. If f:R→R is a function such that f(x)=x3+x2f′(1)+xf′′(2)+f′′′(3) ∀ x∈R, then f(2)−f(1)=
- f(0)
- −f(0)
- f′(0)
- −f′(0)
Q. If f:R→R and f(x) is a polynomial function of degree eleven and f(x)=0 has all real and distinct roots. Then the equation (f′(x))2−f(x)f′′(x)=0 has
- no real roots
- 10 real roots
- 11 real roots
- 21 real roots
Q. A particle moves in a straight line according to the law v2=4a(xsinx+cosx) where v is the velocity of a particle at a distance x from the fixed point. Then the acceleration is
- 2axcosx
- axcosx
- 2axsinx
- axsinx
Q. If d2xdy2(dydx)3+d2ydx2=k, then k is equal to
- \N
- 1
- 2
- None of these