Integration by Partial Fractions
Trending Questions
Q. If ∫ln(x2+x)dx=xln(x2+x)+f(x)+c, then f(x) equals:
- 2x−ln(x+1)
- −2x−ln(x+1)
- 2x+ln(x+1)
- −2x+ln(x+1)
Q.
Choose a proper fraction out of the following-
x2 − 3x + 3
3x3 − 7x2 + 5x2 + 3
x − 3x + 3
x − 3x2 + 3
Q. While using the method of partial fraction, the degree of polynomial in numerator should not be less than that of denominator.
- True
- False
Q. If ∫5tanxtanx−2=x+aln|bsinx−dcosx|+k, then a is equal to :
- -1
- -2
- 1
- 2
Q. The number of value(s) of x satisfying the equation (x+9)2+8|x+9|+7=0 is
Q. Let α∈(0, π2) be fixed. If the integral ∫tanx+tanαtanx−tanαdx=A(x)cos2α+B(x)sin2α+C, where C is a constant of integration, then the functions A(x) and B(x) are respectively:
- x−α and loge|sin(x−α)|
- x+α and loge|sin(x−α)|
- x−α and loge|cos(x−α)|
- x+α and loge|sin(x+α)|
Q. Let f(x) be a quadratic function such that f(0)=1 and ∫f(x)x2(x+1)3dx is a rational function. Then the value of f′(0) is
Q. The value of ∫(x−1)(x−2)(x−3)(x−4)(x−5)(x−6) dx is
(where ′C′ is the constant of integration)
(where ′C′ is the constant of integration)
- x+3ln|x−4|−24ln|x−5|+30ln|x−6|+C
- x+3ln|x−4|−12ln|x−5|+30ln|x−6|+C
- x+3ln|x−4|−12ln|x−5|+36ln|x−6|+C
- x+12ln|x−4|−24ln|x−5|+30ln|x−6|+C
Q. ∫2x(x2+1)(x2+2)dx is equal to
- log(x2+1x2+2∣∣+C
- log(x2−1x2+2∣∣+C
- log(x2+1x2−2∣∣+C
Q. ∫x2(x2+1)(x2+4)dx is equal to
−13tan−1x+23tan−1x2+C
−13tan−1x−23tan−1x2+C
13tan−1x+23tan−1x2+C- 13tan−1x−23tan−1x2+C
Q.
Let ∫dxx2008+x=1p ln(xq1+xr)+C where p, q, rϵN and need not be distinct, then the value of (p+q+r) equals
6024
6022
6021
6020