Integration by Partial Fractions
Trending Questions
Q. The value of the integral ∫1−x2x(1−2x)dx is
(where C is an arbitrary constant)
(where C is an arbitrary constant)
- x2+ln|x|−34ln|1−2x|+C
- x4+ln|x|−43ln|1−2x|+C
- x2+ln|x|+43ln|1−2x|+C
- x4−ln|x|+34ln|1−2x|+C
Q.
If 1(x − 1)(x + 2)(2x + 3) can be expressed as Ax − 1 + Bx + 2 + C2x + 3 then what will be the respective values of A, B and C?
Q.
The value of ∫x + 5(x − 2)2dx is :
ln|(x−1)|−7(x − 2)+C
ln|(x−2)|−7(x − 1)+C
ln|(x−2)|−7(x − 2)+C
ln|(x−1)|−7(x − 1)+C
Q.
Choose a proper fraction out of the following-
Q. If ∫5tanxtanx−2=x+aln|bsinx−dcosx|+k, then a is equal to :
- -1
- 2
- 1
- -2
Q.
Let ∫dxx2008+x=1p ln(xq1+xr)+C where p, q, rϵN and need not be distinct, then the value of (p+q+r) equals
6024
6022
6021
6020
Q. ∫x2(x2+1)(x2+4)dx is equal to
−13tan−1x+23tan−1x2+C
−13tan−1x−23tan−1x2+C- 13tan−1x−23tan−1x2+C
13tan−1x+23tan−1x2+C