Integration of Piecewise Continuous Functions
Trending Questions
Q. Consider the integral I=10∫0[x] e[x]ex−1dx, where [x] denotes the greatest integer less than or equal to x. Then the value of I is equal to :
- 45(e−1)
- 45(e+1)
- 9(e−1)
- 9(e+1)
Q.
∫20([x]2−[x2])dx is equal to
−4+√3+√2
4+√3−√2
4+2√3+√2
None of these
Q. The value of the integral, 3∫1[x2−2x−2]dx, where [x] denotes the greatest integer less than or equal to x, is
- −4
- −5
- −√2−√3−1
- −√2−√3+1
Q. Let f(x) = x - [x], for every real number x, where [x] is the greatest integer less than or equal to x. Then, the value of ∫1−1 f(x) dx is
- 1
- \N
- 12
- 32
Q. ∫π20 cox x−sin x1+sin x cos xdx=
- 2
- -2
- \N
None of these
Q. Find the value of ∫∞0[2ex]
- \N
- ln2
- 1
- 2
Q. If f:R→R defined by f(x)={2x+5, x>03x−2, x≤0 then f is
- into function
- one-one function
- onto function
- many-one function
Q. Let f be a non-negative continuous and twice differentiable function defined on R such that f(x)+f(x+32)=6, ∀ x∈R. Then
- f(x) is a periodic function
- f(x) is a non-periodic function
- 300∫0f(x)dx=900
- If f(0)=3, then f′′(x) has at least 3 roots in (0, 6)
Q.
If f(x)=ex1+ex, I1=∫f(a)f(−a)xg{x(1−x)}dx, and I2=∫f(a)f(−a)g{x(1−x)}dx, then the value of I2I1 [AIEEE 2004]
- 1
- -3
- -1
- 2
Q. ∫π0x f (sin x)dx=
- π∫π0 f(sin x)dx
- π2∫π0 f(sin x)dx
- π2∫π20 f(sin x)dx
- None of these
Q. The value of 2∫−2|3x2−3x−6| dx is
Q.
∫π20√cot x√cot x+√tan xdx= [MP PET 1990, 95; IIT 1983; MNR 1990]
- π
- π2
- π4
- π3
Q.
Let f(x)=max(x+|x|, x−[x]) where [x] = the greatest integer in x≤x. Then ∫2−2f(x)dx is equal to
3
2
1
None of these
Q. If f(a+b-x) = f(x), then ∫ba xf(x)dx is equal to
- a+b2∫ba f(b−x)dx
- a+b2∫ba f(x)dx
- b−a2∫ba f(x)dx
- a+b2∫baf(a+b+x)dx
Q. A function f:R→R+ satisfies f(x+y)=f(x)f(y) ∀ x, y∈R. If f(0)=1 and f′(0)=2, then the value of loge3∫0[f(x)e−x]dx is
(where [⋅] is represents the greatest integer function)
(where [⋅] is represents the greatest integer function)
- loge(32)
- loge(92)
- loge(94)
- loge3
Q. Let f:R→R be a function defined by f(x)={[x], x≤2 0, x>2,
where [x] is the greatest integer less than or equal to x. If I=2∫−1xf(x2)2+f(x+1)dx, then the value of (4I–1) is
where [x] is the greatest integer less than or equal to x. If I=2∫−1xf(x2)2+f(x+1)dx, then the value of (4I–1) is
Q. If In=π2∫π4cotnx dx, then
- 1I2+I4, 1I3+I5, 1I4+I6 are in G.P.
- 1I2+I4, 1I3+I5, 1I4+I6 are in A.P.
- I2+I4, I3+I5, I4+I6 are in A.P.
- I2+I4, (I3+I5)2, I4+I6 are in G.P.
Q. ∫π2−π2 cos x1+exdx=
- \N
- -2
- 2
- 1