Integration of Trigonometric Functions
Trending Questions
Q.
The angles of a triangle are in the ratio . Then, the ratio of the smallest side to the greatest side is
Q.
The value of is
None of these
Q. ∫14sin2x+9cos2x dx will be equal to -
- 13tan−1(2tan(x)3)+C
- 16tan−1(2tan(x)3)+C
- 16tan−1(2tan(x)6)+C
- 16tan−1(2tan(x)5)+C
Q.
The maximum value of occurs at is
None of these
Q. If π2∫0cotxcotx+cosec x dx=m(π+n), then m.n is equal to :
- 1
- −1
- 12
- −12
Q.
If , then is equal to.
Q.
The derivative of with respect to is
Q. If ∫x4+1x6+1dx=tan−1f(x)−23tan−1g(x)+c, where c is an arbitrary constant, then
- both f(x) and g(x) are odd functions
- both f(x) and g(x) are even functions
- f(x)=g(x) has no real roots
- ∫f(x)g(x)dx=−1x+13x3+d, where d is an arbitrary constant.
Q.
Evaluate:
positive infinity
does not exist
Q. If ∫√1+cosec x dx=f(x)+C, where C is a constant of integration, then f(x) is equal to
- cos−1(1−2sinx)
- sin−1(1−2sinx)
- −2sin−1(1−2sinx)
- cos−1(1+2sinx)
Q. The value of sin70∘−cos40∘cos70∘−sin40∘ is equal to
sin70∘−cos40∘cos70∘−sin40∘ का मान बराबर है
sin70∘−cos40∘cos70∘−sin40∘ का मान बराबर है
- √3
- −√3
- 1√3
- −1√3
Q.
∫12+3 sinxdx
2√5.log∣∣ ∣∣tanx2+32−√54tanx2+32+√54∣∣ ∣∣+C
12√5.log∣∣ ∣∣tanx2+32−√54tanx2+32+√54∣∣ ∣∣+C
3√5.log∣∣ ∣∣tanx2+32−√54tanx2+32+√54∣∣ ∣∣+C
1√5.log∣∣ ∣∣tanx2+32−√54tanx2+32+√54∣∣ ∣∣+C
Q.
If ∫α0dx1−cosαcosx=Asinα+B (α≠0) the values of A and B are
A=π2, B=0 or A=π4, B=π4sinα
A=π4, B=πsinα
A=π6, B=πsinα
A=π, B=πsinα
Q. If ∫sin−1(√x1+x)dx=A(x)tan−1(√x)+B(x)+C, where C is a constant of integration, then the ordered pair (A(x), B(x)) can be:
- (x−1, −√x)
- (x+1, √x)
- (x+1, −√x)
- (x−1, √x)
Q. The value of ∫x−sinx1−cosxdx is equal to
(where C is integration constant)
(where C is integration constant)
- xcotx2+C
- −xcotx2+C
- 2cotx2+C
- cotx2+C
Q. ∫dxsin2x−12cos2x+cosx sinx is equal to
- 17ln∣∣∣tanx+3tanx−4∣∣∣+C
- 17ln∣∣∣tanx−3tanx+4∣∣∣+C
- 17ln∣∣∣tanx+3tanx+4∣∣∣+C
- 17ln∣∣∣tanx−3tanx−4∣∣∣+C
Q. ∫cosx+√31+4sin(x+π3)+4sin2(x+π3) dx is
where c is constant of integration
where c is constant of integration
- cosx1+2sin(x+π3)+c
- secx1+2sin(x+π3)+c
- sinx1+2sin(x+π3)+c
- 12tan−1(1+2sin(x+π3))+c
Q. ∫cos4xdxsin3x(sin5x+cos5x)35=−12(1+cotAx)B+C then AB=
- 1
- 2
- 12
- None of these
Q. If ∫1(sec x+cosec x+tan x+cot x)2dx=xα+cos(x+π4)β+cos 2xγ+c, then |α+√2β+γ| is , (where c is an arbitrary constant)