Integration to Solve Modified Sum of Binomial Coefficients
Trending Questions
Q. The value of 2c0+222C1+233C2+244C3+....+21111C10 is
- 311−111
- 211−111
- 113−111
- 32−111
Q. The sum to (n+1) terms of the following series C02−C13+C24−C35+⋯ is
- 1n+1
- 1n+2
- 1n(n+1)
- None of these
Q. r=n∑r =0(nr)r+1
- 2n
- 2n+1−1n+1
- n
- nn
Q. ∫√x2+2x+5 dx is equal to
(where C is integration constant)
(where C is integration constant)
- ln∣∣x+√x2+2x+5∣∣+C
- 12(x+1)√x2+2x+5+2ln∣∣x+1+√x2+2x+5∣∣+C
- 12tan−1[x+12]+C
- 12(x+1)√x2+2x+5+2sin−1(x+12)+C
Q. The value of
100limn→200[C1−(1+12)C2+(1+12+13)C3−⋯+(−1)n−1(1+12+13+⋯+1n)Cn] is (where Cr=nCr)
100limn→200[C1−(1+12)C2+(1+12+13)C3−⋯+(−1)n−1(1+12+13+⋯+1n)Cn] is (where Cr=nCr)
Q.
The value of C12 + C34 + C56 + ...... is equal to
2n−1n+1
n.2n
2nn
2n−1