Logarithmic Inequalities
Trending Questions
Q. The domain of the function f(x)=√(log0.2x)3+(log0.2x3)(log0.20.0016x)+36 is
- [0, 625]
- (0, 125]
- [0, 125]
- (0, 625)
Q. If x satisfies the inequality logx+3(x2−x)<1, then
- x∈(−3, −2)
- x∈(−1, 3]
- x∈(1, 3)
- x∈(−1, 0)
Q. The solution set of the inequality (3x−4x)⋅ln(x+2)x2−3x−4≤0 is
- (−∞, 0]∪(4, ∞)
- (−1, 0]∪(4, ∞)
- (−2, −1)∪(−1, 0]∪(4, ∞)
- (−2, 0]∪(4, ∞)
Q. If 3x=4x−1, then x=
- 2log322log32−1
- 22−log23
- 11−log43
- 2log232log23−1
Q.
The derivative of vanishes when
Q. Sum of all integral values of x satisfying the inequality
352log3(12−3x)−3log2x>32 is
352log3(12−3x)−3log2x>32 is
Q. The domain of f(x)=log5(x−[x]) is
(where [.] denotes the greatest integer function)
(where [.] denotes the greatest integer function)
- R−Z
- R
- R+−W
- (0, ∞)
Q. The value of log5+2√6(5−2√6) is
- 1
- −1
- 2
- None of these
Q. The solution set of log2|4−5x|>2 is
- (85, ∞)
- (45, 85)
- (−∞, 0)∪(85, ∞)
- none of these
Q. If x=log53+log75+log97, then x ≥
- 32
- 1213
- 3213
- None
Q.
Evaluate integral
Q. The correct statement(s) among the following is/are
- The value of log3(log465) is greater than 1
- The value of log0.40.3 is less than 1
- The value of log0.9991.999 is positive
- The value of log0.60.98 is negative
Q. In a right-angled triangle, a and b are the lengths of the two sides and c is the length of the hypotenuse. If c+b and c−b are numbers other than 1, then logc+ba+logc−ba=
- logc−ba⋅logc+ba
- 2logc−ba⋅logc+ba
- 3logc−ba⋅logc+ba
- log(c2−b2)a
Q. Which of the following numbers has the positive value?
- log412
- log0.30.1
- log31.3
- log70.6
Q. If logx−26+logx+26>logx−26⋅logx+26, then x∈
- (−∞, 3)
- (−1, 3)
- (√10, ∞)
- (2, 3)
Q. If logx−3(x2−10x+24)≥logx−3(x2−6), then
- x∈(√6, 4)
- x∈(√6, 3)
- x∈(√6, 6)
- x∈(3, 4)
Q. The solution set of log3(x2−2)<log3(32|x|−1) contains
- (−2, −√2)
- (−2, √2)
- (√2, 2)
- (−√2, 2)
Q. The complete solution set of the inequality
log1/3(x+1)>log3(3−x) is
log1/3(x+1)>log3(3−x) is
- x∈(1−√3, 3)
- x∈(−1, 1−√3)∪(1+√3, 3)
- x∈(−1, 1+√3)
- x∈(−1, 1)∪(1+√3, 3)
Q. The integral value of x satisfying the equation ∣∣log√3x−2∣∣−|log3x−2|=2, is
Q. The solution set of the inequality log0.5√x−4x−3<log0.52 is
- (0, 3)
- (0, 83)
- (83, 3)
- (83, 3)∪(4, ∞)
Q.
If 2|3x+9|<36, then the number of integral values of x is
Q. The domain of the function f(x)=2log2x+2x+3x2−4x+3 is
- R−{3}
- (0, ∞)−{1, 3}
- R−{1, 3}
- R−{1}
Q. The solution set of the inequality (0.5)log3log0.2(x2−45)<1 is
- (−2√5, 2√5)
- (−1, −2√5)∪(2√5, ∞)
- (−∞, −2√5)∪(2√5, 1)
- (−1, −2√5)∪(2√5, 1)
Q. The complete set of values of x that satisfies the expression 1log4(x+1x+2)>1log4(x+3) is
- (−1, ∞)
- (−3, −2)
- (−3, 1)
- (−∞, −2)
Q. The solution set of the inequality log3((x+2)(x+4))+log1/3(x+2)<12 log√37 is
- (−2, −1)
- (−2, 3)
- (−1, 3)
- (3, ∞)
Q. f:A→B is a function satisfying 3f(x)+2−x=4. Then the domain and range of f are
- A={x∈R:−1<x<∞};
R(f)={x∈R:2<x<4} - A={x∈R:−3<x<∞};
R(f)={x∈R:0<x<log34} - A={x∈R:−2<x<∞};
R(f)={x∈R:−∞<x<log34} - A={x∈R:−2<x<∞};
R(f)={x∈R:−∞<x<log341}
Q. Let f(x)=∫x0(3u2+2u+2)du, where x satisfies the inequality log2(1+√6x−x2−5)⩾0. If minimum and maximum values of f(x) are 'm' and 'M' respectively then M+m4 is
Q. Solution set of the inequality log3(x+2)(x+4)+log13(x+2)<12 log√37 is -
- (−2, −1)
- (−1, 3)
- (−2, 3)
- (3, ∞)
Q. Solve |x|−1|x|−2≥0, x≠±2
- (2, ∞)
- (−∞, −2)∪(2, ∞)
- (−∞, −2)∪[−1, 1]∪(2, ∞)
- [−1, 1]
Q. If x, y, z are in G.P., where x, y, z>1, then 11+logx, 11+logy, 11+logz are in
- A.P.
- G.P.
- H.P.
- None of these